MINISTRY OF SECONDARY

PRIMARY AND EDUCATION

ZIMBABWE

BIOLOGY

SYLLABUS

FORMS 5 and 6 (2015 – 2022)

Curriculum Development Unit P. O. Box MP 133 Mount Pleasant HARARE

©All Rights Reserved 2016

ACKNOWLEDGEMENTS

The Ministry of Primary and Secondary Education would like to acknowledge contributions made by the following towards the development and production of this syllabus:

- The National Biology Syllabus Panel
- Zimbabwe School Examinations Council(ZIMSEC)
- Government Departments
- Ministry of Higher and Tertiary Education, Science and Technology Development
- UNICEF
- UNESCO

TABLE OF CONTENTS

Contents

10 PREAMBLE	4
7.0 SCOPE AND SEOUENCE	7

10 PREAMBLE

1.1 INTRODUCTION

The Biology Syllabus is designed for learners in Forms 5 and 6. The learners are expected to acquire theory, practical, research and problem solving skills. The syllabus will enable learners to appreciate the local flora and fauna and to utilize them sustainably for their own development and for the development of the nation at large. It encourages research on contemporary issues related to Biology as well as use of several tools of Information and Communication Technology (ICT).

1.2 RATIONALE

This syllabus empowers learners to employ biological skills in solving real life problems and also emphasizes the link between human activities and the environment. Students acquire knowledge and skills of inquiry that help them to examine critical issues that arise in their own lives and in the public domain, to contribute to debate and make informed decisions about their own health and well-being and that of the society. The skills will be learnt through practical application and understanding of biological concepts. The syllabus enables learners to cherish team work, to be innovative, enterprising and self-reliant leading to the socio-economic development of the nation.

1.3 SUMMARY OF CONTENT

This syllabus covers theory and practical skills in the following broad branches of Biology: Biochemistry, Cell Biology, Microbiology, Genetics, Biotechnology, Anatomy, Physiology, Human Health and Disease, Ecology and Biodiversity.

1.4 ASSUMPTIONS

The syllabus assumes that learners:

- have studied and passed
 Sciences and Mathematics at form 4
- can use appropriate apparatus to perform a given task
- have developed an awareness and interest in the importance of conservation of the environment
- can integrate concepts and skills learnt from other learning areas in the learning of Biology
- have knowledge on use of ICT tools

1. 5 CROSS- CUTTING THEMES

In order to foster competency development for life and work, the following crosscutting priorities have been taken into consideration:

- Gender and inclusivity
- Environmental issues
- Information and Communication Technology
- Disaster and Risk Management
- Collaboration

- Sexuality, HIV and AIDS
- Animal rights
- Human rights
- Enterprise
- Health Education

2.0 PRESENTATION OF SYLLABUS

The Biology Syllabus is presented as a single document for Forms 5 and 6 with thirteen compulsory topics.

3.0 AIMS

The syllabus aims to:

- 3.1 develop abilities and skills that enable learners solve day to day challenges and become self-reliant
- 3.2 provide the basis for further studies in Biological Sciences and other related professional and vocational courses3.3 develop attitudes of
- concern for accuracy and precision, innovativeness, objectivity and integrity in the study of Biology
- 3.4 develop enterprising skills that lead to value addition of natural resources
- 3.5 develop an awareness of the diversity of life, global environmental issues and understand the need for conservation and its relevance to society
- 3.6 promote an awareness of the use of Information Technology

(IT) for communication as an aidto biological research3.7 develop an appreciation ofhealth issues in a global context

4.0 SYLLABUS OBJECTIVES

Learners should be able to:

- 4. 1 apply biological knowledge to solve day-to-day challenges
- 4. 2 use scientific research methods and techniques for self-reliance
- 4. 3 demonstrate an understanding of biological knowledge and concepts in novel situations
- 4. 4 measure with accuracy and precision
- 4. 5 manipulate numerical and other forms of data
- design practical
 experiments and projects to solve
 problems
- 4. 7 suggest ways of sustainable use of natural resources for socio economic development
- 4. 8 explain the importance of conserving biodiversity and the environment
- 4. 9 use appropriate ICT tools to solve scientific problems

4. 10 demonstrate an understanding of global distribution of diseases

5.0 METHODOLOGY AND TIME ALLOCATION

METHODOLOGY

The syllabus is based upon interactive, multi-sensory, learner centered and practical **Principles** approaches. independence, teamwork, completeness and stimulation must be applied to enhance the learning – teaching process. The learners should be allowed to apply their experiences. knowledge, skills and attitudes in the learning of the subject. The following are the suggested methods:

- 5.1 Experimentation
- 5.2 Discovery
- 5.3 Demonstrations
- 5.4 Problem solving
- 5.5 Discussions
- 5.6 e-learning
- 5.7 Group work
- 5.8 Educational tours
- 5.9 Project based learning
- 5.10 Research
- 5.11 Observations
- 5.12 Simulations

TIME ALLOCATION

• For adequate coverage of the syllabus, a time allocation of 12 periods per week is required to adequately cover the syllabus. Each period should be at least 35 minutes long. Four double periods and one block of four periods per week are recommended. Learners should be engaged in at least two Educational Tours (educational visits by students to local and away sites) per year. Participation in at least two Biology seminars and one Science exhibition per year is recommended.

6.0 TOPICS

The syllabus consists of thirteen compulsory topics listed below:

- 6.1 Cell Structure and Function
- 6.2 Biological Molecules and Water
- 6.3 Cell and Nuclear Division
- 6.4 Genetic Control
- 6.5 Gene Technology
- 6.6 Inherited Change and Evolution
- 6.7 Energetics
- 6.8 Transport Systems
- 6.9 Nervous Control
- 6.10 Sexual Reproduction
- 6.11 Ecology
- 6.12 Biodiversity
- 6.13 Human Health and Disease

7.0 SCOPE AND SEQUENCE

TOPIC	FOF	RM 5	FORM 6
7.1 Cell Structure a	PIOEIM	icroscopy ant and Animal Cells rganelles and their functions ukaryotic and Prokaryotic cells ovement of substances into and out	
7.2 Biological Mo	olecules and Water • • •	Carbohydrates Lipids Proteins Water	
7.3 Cell and Nuc	lear Division •	The Cell cycle Mitosis Meiosis	
7.4 Genetic Cont	trol •	Nucleic Acids Structure and replication of DNA Protein synthesis	
7.5 Gene Techno	ology		 Insulin Production Genetic Screening and Finger Printing Gene Therapy Benefits and Hazards of Gene Technology Ethical implications of Gene Technology
7.6 Inherited Cha	ange and Evolution •	Nature of Gene Monohybrid and Dihybrid Crosses	Natural selectionArtificial selection

7.7	Energetics	ATP Structure and SynthesisPhotosynthesisRespiration	
7.8	Transport Systems	 Structure and Mechanisms of transport systems in plants 	Mammalian circulatory system
7.9	Nervous Control		Need for communicationAction potentialCholinergic synapse
7.10	Sexual Reproduction		Sexual Reproduction in PlantsSexual Reproduction in Humans
7.11	Ecology		 Levels of ecological organization Nitrogen cycle Conservation Anthropogenic impact on ecosystems
7.12	Biodiversity		ClassificationImportance of Biodiversity
7.13	Human Health and Disease	Drug and substance abuseGlobal distribution of DiseasesImmunity	

FORM 5

8.0 COMPETENCY MATRIX

8.1 TOPIC 1 CELL STRUCTURE AND FUNCTION

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.1.1Microscopy	 Calibrate eyepiece graticule Draw and determine linear dimensions of specimens distinguish between magnification and resolution prepare temporary slides 	 calibration and measurement units of measurement (millimetre, micrometre and nanometre) -magnification and resolution (refer to light and electron microscopes) wet mounts staining 	 Calibrating eyepiece graticule. Observing cells using light microscope. Measuring linear dimensions of specimens. Discussing the concepts magnification and resolution. Mounting temporary slides. Staining wet mounts with appropriate stains. 	 Relevant reference materials ICT tools Braille software/Jaws Light Microscope (X4, X10, X40 objective lenses) Hand lenses Graticules Stage micrometers Stains Prepared slides
8.1.2 Plant and Animal Cells	identify plant and animal cells	- Ultra structure of the plant and animal cells	Observing plant and animal cells.Drawing plant and animal cells.	PhotomicrographsPrint mediaICT toolsBraille

	compare plant and animal cells	- Rough and smooth endoplasmic reticula, Golgi body, mitochondria,ribosomes, chloroplasts, cell surface membrane, nuclear envelope, centrioles, nucleus and nucleolus	Discussing the similarities and differences between plant and animal cells.	software/Jaws
8.1.3 Organelles and their functions	outline the functions of organelles	- Functions of cell organelles listed above	Discussing functions of cell organelles.	 Photomicrographs Print media ICT tools Braille software/Jaws
8.1.4 Eukaryotic and Prokaryotic Cells	compare eukaryotic and prokaryotic cells	- Structure of eukaryotic and prokaryotic cells	 Observing and drawing eukaryotic and prokaryotic cells. Discussing the similarities and differences between the cells. 	 Prepared slides Microscope Print media ICT tools Braille software/Jaws
8.1.5 Movement of substances into and out of cells	 describe and explain the cell surface membrane structure relate the structure of the membrane to movement of substances into 	 Fluid mosaic model including the roles of phospholipids, cholesterol, glycolipids, proteins and glycoproteins Diffusion Facilitated diffusion 	 Drawing the cell surface membrane. Identifying the components. Discussing the functions of parts of the cell surface membrane. 	 Print media Photomicrographs ICT tools Braille software/Jaws

•		Designing and carrying	•
• and out of cells	- Osmosis - Active uptake - Endocytosis - Exocytosis	out experiments to demonstrate osmosis (include serial dilutions).	OnionPotatoesSlidesMicroscopeEgg membraneVisking tubing

8.2 TOPIC 2 BIOLOGICAL MOLECULES AND WATER

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.2.1 Carbohydrates	 carry out tests to identify carbohydrates describe the 	 Reducing sugars Non- reducing sugars Starch (Qualitative and Quantitative tests) 	 Performing the reducing and non-reducing sugar tests. Carrying out the starch test. 	 Benedict's solution Reducing sugars Non-reducing sugars Potassium iodide solution Colorimeters
	formation and breakage of glycosidic bond • describe the synthesis and molecular structure of polysaccharides • relate structures of	Glycosidic bondStarchGlycogencellulose	 Illustrating formation and breakage of glycosidic bonds. Discussing the synthesis and molecular structure of starch, glycogen and cellulose. 	ICT toolsBraille software/Jawsmodels

	polysaccharides to their functions in living organisms		 Observing molecular structures of polysaccharides. Discussing the link between the structure and the function of each polysaccharide. 	
8.2.2 Lipids	identify lipids in different substances	- emulsion test	- Carrying out the emulsion test.	LipidsAlcoholICT tools
	 describe the molecular structures of a triglyceride and a phospholipid 	triglyceridesphospholipids	- Illustrating the molecular structures of a triglyceride and a phospholipid.	Braille software/JawsModels
	 relate the structures of triglycerides and phospholipids to their functions in living organisms 		 Observing the molecular structures Discussing the relationship between structures and functions. 	
8.2.3 Proteins	 Identify proteins in different food substances 	- Biuret test	- Carrying out the Biuret test for proteins.	Biuret reagentsICT toolsBraille
	describe the structure of an amino acidoutline the	Amino acidstructurePeptide BondDipeptidesPolypeptides	 Observing the molecular structure of amino acid. Demonstrating peptide bond 	software/Jaws • Print media • Models (buttons/beads

formation and breakage of a peptide bond • explain the meaning of the terms primary, secondary, tertiary and quaternary structures of proteins • describe the types of bonds which hold the protein molecules in shape • describe the molecular structures of haemoglobin and breakage. - Primary, Secondary, Tertiary, Quaternary structures of proteins. - Hydrogen, ionic, disulphide and hydrophobic various bonds in proteins. - Haemoglobin - Collagen - Making models of haemoglobin and collagen Discussing the relationship
explain the meaning of the terms primary, secondary, tertiary and quaternary structures of proteins describe the types of bonds which hold the protein molecules in shape describe the molecular structures describe the molecular structures
 explain the meaning of the terms primary, secondary, tertiary and quaternary structures of proteins describe the types of bonds which hold the protein molecules in shape describe the molecular structures explain the meaning of the terms structures Hydrogen, ionic, disulphide and hydrophobic interactions Hydrogen, ionic, disulphide and hydrophobic interactions Haemoglobin - Collagen Making models of haemoglobin and collagen. Discussing the various bonds in proteins. Making models of haemoglobin and collagen. Discussing the various bonds in proteins.
meaning of the terms primary, secondary, tertiary and quaternary structures of proteins - Hydrogen, ionic, disulphide and hydrophobic interactions - Discussing the various bonds in proteins. - Discussing the various bonds in proteins. - Haemoglobin - Collagen - Making models of haemoglobin and collagen. - Discussing the various bonds in proteins.
primary, secondary, tertiary and quaternary structures of proteins - Hydrogen, ionic, disulphide and hydrophobic interactions - Discussing the various bonds in proteins. - Discussing the various bonds in proteins. - Haemoglobin - Collagen - Making models of haemoglobin and collagen. - Discussing the various bonds in proteins.
tertiary and quaternary structures of proteins - Hydrogen, ionic, disulphide and hydrophobic various bonds in proteins. - Discussing the various bonds in proteins. - Haemoglobin - Collagen - Discussing the various bonds in proteins. - Haemoglobin - Collagen - Making models of haemoglobin and collagen Discussing the
quaternary structures of proteins - Hydrogen, ionic, disulphide and hydrophobic various bonds in proteins. - Discussing the various bonds in proteins. - Haemoglobin - Haemoglobin - Collagen - Making models of haemoglobin and collagen. - Discussing the various bonds in proteins.
of proteins - Hydrogen, ionic, disulphide and hydrophobic various bonds in proteins. - Discussing the various bonds in proteins. - Haemoglobin - Haemoglobin - Collagen - Making models of haemoglobin and collagen. - Discussing the various bonds in proteins.
disulphide and hydrophobic various bonds in proteins. • describe the types of bonds which hold the protein molecules in shape • describe the molecular structures disulphide and hydrophobic various bonds in proteins. - Haemoglobin - Collagen - Making models of haemoglobin and collagen Discussing the various bonds in proteins.
hydrophobic various bonds in proteins. • describe the types of bonds which hold the protein molecules in shape • describe the molecular structures hydrophobic interactions - Haemoglobin - Collagen - Making models of haemoglobin and collagen Discussing the
 describe the types of bonds which hold the protein molecules in shape describe the molecular structures interactions proteins. Haemoglobin - Collagen Collagen Making models of haemoglobin and collagen. Discussing the
types of bonds which hold the protein molecules in shape • describe the molecular structures types of bonds which hold the protein - Haemoglobin - Collagen • Collagen - Making models of haemoglobin and collagen Discussing the
hold the protein molecules in shape • describe the molecular structures hold the protein - Haemoglobin - Making models of haemoglobin and collagen Discussing the
molecules in shape - Collagen - Making models of haemoglobin and collagen Discussing the
of haemoglobin and collagen. molecular structures of haemoglobin and collagen. Discussing the
 describe the molecular structures collagen. Discussing the molecular structures
molecular structures - Discussing the
molecular structures
of hapmodohin and [EldUIISIII]
or national and
collagen between structure and function.
relate the
structures of
haemoglobin and
collagen to their functions in living - Lock and key - Constructing
hundle to
organisms hypothesis models to - Induced fit demonstrate the
hypothesis mode of action of
an a rmoo
explain the mode
of action of enzymes of action of enzymes Amylase
- Enzyme - Measuring the - Substrates
catalyzed reactions rate of formation of

 follow the progress of an enzyme catalyzed reaction 	- Effects of temperature, pH, enzyme concentration and substrate concentration	products or rates of disappearance of substrates. - Carrying out experiments to show effects of the factors on the rate of reactions.	 Buffers Acids and bases Inhibitors Models of enzymes
 explain factors affecting rate of enzyme catalysed reactions explain the effect of competitive and non – competitive inhibitors on enzyme activity 	- Reversible and non- reversible inhibition Inhibitors such as heavy metals (cyanide, mercury), insecticides	- Demonstrating effects of inhibitors on enzyme catalysed reactions.	
describe the structure and properties of water	 Structure of a water molecule Physical and chemical properties of water 	 Constructing a water molecule model. Performing experiments illustrating various properties of water. 	ICT toolsBraillesoftware/JawsModels
	 explain factors affecting rate of enzyme catalysed reactions explain the effect of competitive and non – competitive inhibitors on enzyme activity describe the structure and 	progress of an enzyme catalyzed reaction - Effects of temperature, pH, enzyme concentration and substrate concentration - explain factors affecting rate of enzyme catalysed reactions - Reversible and non- reversible inhibition Inhibitors such as heavy metals (cyanide, mercury), insecticides - explain the effect of competitive and non – competitive inhibitors on enzyme activity - describe the structure and properties of water - Effects of temperature, pH, enzyme concentration and substrate concentration - Reversible and non- reversible inhibition Inhibitors such as heavy metals (cyanide, mercury), insecticides	• follow the progress of an enzyme catalyzed reaction • explain factors affecting rate of enzyme catalysed reactions • explain the effect of competitive inhibitors on enzyme activity • describe the structure and properties of water • follow the progress of an enzyme catalyzed reaction • Effects of temperature, pH, enzyme concentration and substrate concentration • explain factors affecting rate of enzyme catalysed reactions • explain the effect of competitive and non – competitive inhibitors on enzyme activity • describe the structure and properties of water • follow the progress of an enzyme concentration • Effects of temperature, pH, enzyme concentration and substrate concentration • explain factors affecting and non-reversible and non-reversible inhibition Inhibitors such as heavy metals (cyanide, mercury), insecticides • describe the structure and properties of water • Tructure of a water molecule and chemical properties of water • Carrying out experiments to show effects of the factors on the rate of reactions. • Demonstrating effects of inhibitors on enzyme catalysed reactions. • Constructing a water molecule model. • Performing experiments in illustrating various properties of water.

explain the roles	living organisms	bodies.	
of water in living		 Discussing the 	
organisms and as an		roles of water in	
environment		living organisms.	

8.3 TOPIC 3 CELL AND NUCLEAR DIVISION

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.3.1 The Cell Cycle	outline the cell cycle	InterphaseMitosisCytokinesis	Illustrating the cell cycle.	ICT toolsBraille software/JawsPrint media
	describe interphase	- Growth - DNA replication	Outlining DNA replication.	
8.3.2 Mitosis	 describe the behaviour of chromosomes, nuclear envelope, cell membrane, centrioles and spindles during 	- Prophase - Metaphase - Anaphase - Telophase	 Observing behavior of chromosomes in a root tip squash Drawing of diagrams showing 	 Onion root tips Microscope Stains Prepared slides ICT tools Braille

	 distinguish between cytokinesis in plants and animals explain the importance of mitosis identify factors that increase chances of cancerous growth 	 Cytokinesis Growth Repair Asexual reproduction Production of genetically identical cells 	 Discussing cytokinesis in plant and animal cells. Discussing the importance of mitosis. 	software/Jaws • Print media • Cancer video clips
	 outline the stages involved in the development of cancer 	CarcinogensMutationsRadiationUncontrolled cell division	 Discussing factors associated with cancerous growth. Watching and analysing cancer video clips. 	
8.3.3 Meiosis	 explain the meanings of the terms haploid, diploid and homologous chromosomes Describe the behaviour of chromosomes, nuclear 	HaploidDiploidHomologousChromosomes	 Illustrating haploid cells, diploid cells and homologous chromosomes. Observing 	ICT toolsBraille software/JawsPrint media

meiosis -	Meiosis I Meiosis II Cytokine sis Drawing of diagrams showing phases of meiosis. Discussing the importance of meiosis. Discussing the similarities and
-----------	---

8.4 TOPIC 4 GENETIC CONTROL

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.4.1 Nucleic Acids	describe the structure of a nucleotide	- Nucleoside - Nucleotide	Illustrating the structure of a nucleotide.	ModelsICT toolsBraille software/Jaws
	describe formation of	DinucleotidePhosphodiester	Demonstrating the	

8.4.2 Structure and replication of DNA	a dinucleotide distinguish between Ribonucleic acid (RNA) and Deoxyribonucleic acid (DNA) nucleotides describe the structure of DNA explain how DNA replicates	bonds - RNA nucleotides - DNA nucleotides - DNA structure - semi - conservative replication of DNA - Messelson and Stahl experiment	formation of a phosphodiester bond. Discussing the differences. between RNA and DNA nucleotides. Constructing models of DNA. Making DNA models illustrating replication.	 ICT tools Braille software/Jaws Print media Models (zips, beads, soft wires)
8.4.3 Protein synthesis	 outline the process of protein synthesis 	 Transcription Translation including role of messenger RNA, transfer RNA and ribosomes 	 Viewing simulations and videos of protein synthesis. 	ICT toolsBraillesoftware/Jaws

8.5 TOPIC 5 INHERITED CHANGE AND EVOLUTION

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.5.1 Nature of Gene	discuss the gene concept	- Gene as unit of inheritance	Discussing the gene concept.	ICT toolsBraille software/Jaws

				Print media
8.5.2 Monohybrid and Dihybrid crosses	use genetic diagrams to solve problems involving monohybrid and dihybrid crosses	- Co-dominance - Sex linkage - Multiple alleles - Test crosses	 Performing genetic crosses. Demonstrating genetic crosses using beads, seeds or pebbles. 	 Print media Seeds Pebbles Beads Scientific calculator Statistical tables
	use chi – squared test to test whether there is a significant difference or not between observed and expected results	- Chi – squared test	Applying the chi- squared test to results obtained from the demonstrations.	

8.6 TOPIC 6 ENERGETICS

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.6.1 ATP Structure and Synthesis	• outline the need for energy in living	- Anabolic reactions - Active transport	 Discussing uses of energy. 	Print mediaICT tools

	organisms	MovementMaintenance of body temperature		Braille software/Jaws
	describe ATP structure as a phosphorylated nucleotide	- Structure of ATP	• Illustrating the structure of ATP.	Model
	describe synthesis of ATP by chemiosmosis	- Chemiosmosis	 Illustrating the chemiosmosis coupling of ATP synthesis. 	
8.6.2 Photosynthesis	 draw detailed structure of chloroplast identify chloroplast pigments 	chloroplast structureChloroplast pigments	 Drawing and labeling chloroplast. Separating pigments by paper chromatography. Collecting different colored 	 Print media Filter paper Acetone Different coloured leaves Leaf extracts
	 discuss the role of chloroplast pigments in absorption and action spectra describe the photo - activation of chlorophyll 	 Absorption and Action spectra Light dependent reactions (cyclic and noncyclic photo phosphorylation) 	leaves. • Finding out other uses of pigments in life. • Analysing absorption and action spectra. • Outlining the light dependent reactions of photosynthesis.	ICT toolsBraillesoftware/Jaws

	 outline the Calvin Cycle discuss photosynthesis in C₄ plants 	 Light – independent reactions (Calvin Cycle) Carbon fixation in C₄ plants 	Illustrating the Calvin Cycle.	
	discuss the concept of limiting factors	 Light intensity and wavelength Carbon dioxide concentration Temperature 	 Discussing carbon fixation in C₄ plants. Investigating the effects of limiting factors on rate of photosynthesis. 	
8.6.3 Respiration	 Draw detailed structure of mitochondrion 	- Mitochondrion	Drawing and annotating mitochondrion.	ICT toolsPrint mediaBraillesoftware/Jaws
	 outline the process of glycolysis 	- Glycolysis	Outlining the process of glycolysis.	SUITWAIE/Jaws
	 describe the formation of acetyl Coenzyme A (CoA) from pyruvate 	- Link reaction	Discussing the conversion of pyruvate to acetyl CoA.	
	outline the KrebsCycle	Krebs CycleDecarboxylation	Illustrating the steps in the conversion of citrate to	

	- Dehydrogenation	oxaloacetate.	
 explain decarboxylation and dehydrogenation in relation to the link reaction and the Krebs cycle describe the process of oxidative phosphorylation in the mitochondrion 	 Election transport chain Role of oxygen Role of Nicotinamide Adenine Dinucleotide (NAD) 	 Discussing the processes of decarboxylation and dehydrogenation Discussing oxidative phosphorylation. 	
 outline the process of anaerobic respiration in plant/ yeast and animal cells design experiments to compare rates of fermentation 	 Anaerobic respiration fermentation Carbohydrates Proteins Lipids 	 Discussing anaerobic respiration. Designing and carrying out experiments to compare rates of fermentation. 	YeastSucrose/Glucose
 explain the relative energy values of carbohydrates, lipids and proteins as respiratory substrates 	- RQ - Effect of temperature on respiration rates	 Performing experiments to determine energy values. Designing and carrying out 	Food samplesRespirometer

define the term Respiratory Quotient (RQ)	experiments using simple respirometers to measure RQ.	Small animals such as beetles, harurwa caterpillars, amacimbi
• calculate RQ	Calculating RQ.	Water bathIncubator

8.7 TOPIC 7 TRANSPORT SYSTEMS

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.7.1 Structure and mechanisms of transport systems in plants	describe the structures of the xylem vessels, sieve tube elements and companion cells explain how the xylem vessels and phloem tubes are adapted to their functions	- Structure and adaptations of xylem vessels, sieve tube elements and companion cells	 Examining fresh monocotyledonous and dicotyledonous plant roots and stems. Drawing cross sectional diagrams of monocot and dicot plant roots and stems. Discussing adaptations of xylem and phloem. 	 microscope Slides Prepared slides Staining dyes Microtome ICT tools Braille software/Jaws Print media Scalpel blades Visking tubing Live plants
	• describe, clearly	- Osmosis - Apoplast	Discussing the	

stating the pathways, how water is transported from the soil to the xylem	SymplastVacuolarRole of the Casparian strip	pathways.
explain the mechanisms by which water is transported from soil to xylem and from roots to leaves	OsmosisRoot pressureTranspiration pullCapillary effect	Observing effect of root pressure by cutting a stem of a live plant.
• explain the translocation of sucrose	- Mass flow hypothesis	Demonstrating mass flow hypothesis.

8.8 TOPIC 8 HUMAN HEALTH AND DISEASE

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.8.2 Global distribution of diseases	discuss the global distribution of diseases	 Malaria Tuberculosis Ebola HIV/AIDS Cholera Coronary heart 	 Discussing and evaluating epidemiological evidence of diseases. Visiting clinics. 	 Resource person Print media ICT tools Braille software/Jaws

	ease	
-	Sickle cell	
ana	emia	

FORM 6

8.9 TOPIC 1 GENE TECHNOLOGY

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.9.1 Insulin Production	outline the synthesis of human insulin by bacteria	- Steps involved in the production of human insulin by bacteria	 Illustrating genetic engineering using paper and scissors. Conducting educational tours to Biotechnology laboratories. 	Paper and scissors models • ICT tools • Braille software/Jaws
	explain the advantages of treating diabetics with human insulin produced by gene technology	- Advantages of human insulin produced by gene technology in treating diabetes	Discussing the advantages of use of insulin from gene technology.	
8.9.2 Genetic Screening and Fingerprinting	 describe how genetic screening is carried out 	- Genetic screening	 Discussing how genetic screening is carried out. 	ICT Braille software/Jaws

	 discuss the roles of genetic screening for genetic conditions and need for genetic counselling 	- Roles of genetic screening	Discussing the roles of genetic screening.	Ink padsBond paperHand lense
	 explain the theoretical basis of genetic fingerprinting outline how the process of genetic fingerprinting is carried out 	- Genetic fingerprinting	 Observing simulations of electrophoresis process. Discussing genetic fingerprinting. 	
8.9.3 Gene Therapy	outline the basis of gene therapy	- Gene therapy	 Discussing gene therapy. 	ICT toolsBraillesoftware/Jaws
8.9.4 Benefits and hazards of Gene Technology	explain the benefits and hazards of gene technology	- Gene technology - Its benefits and hazards	 Discussing benefits and hazards of gene technology. 	ICT toolBraillesoftware/Jaws
8.9.5 Ethical implications of Gene Technology	discuss the social and ethical implications of gene technology	- Social and ethical implications of gene technology	 Researching and debating on the social and ethical implications of gene technology. 	ICT toolsBraillesoftware/Jaws

8.10 TOPIC 2 INHERITED CHANGE AND EVOLUTION

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.10.1 Natural selection	explain, with examples, how mutations and environment may affect phenotype	Natural SelectionMutations	Discussing how mutations and environment may affect phenotype.	Print mediaICT toolsBraille software/Jaws
	 explain, with examples, how environmental factors act as forces of natural selection 	Natural selectionEnvironmental factors	Discussing with examples how environmental factors act as forces of natural selection.	
	explain how natural selection may bring about evolution	- Evolution	 Researching and presenting on how natural selection may bring about evolution. 	
8.10.2 Artificial selection	describe one example of artificial selection	- Artificial selection	Outlining the examples of artificial selection.	ICT toolsPrint mediaBraillesoftware/Jaws

8.11 TOPIC 3 TRANSPORT SYSTEMS

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.11.1 Mammalian circulatory system	identify arteries, veins and capillaries	- Arteries, veins and capillaries	 Recognising the vessels under the light microscope. Drawing plan diagrams of blood vessels. 	 Microscope Prepared slides Photomicrographs ICT tools Print media Braille software/Jaws
	explain the role of haemoglobin in the transportation of oxygen and carbon dioxide	- Transportation of oxygen and carbon dioxide	Discussing the transportation of oxygen and carbon dioxide.	
	 explain the Bohr effect explain the significance of the difference in the affinity for oxygen between: Haemoglobin and myoglobin Maternal and foetal haemoglobin 	 Oxygen dissociation curves Difference in oxygen affinity between: Haemoglobin and myoglobin Maternal and foetal haemoglobin 	 Analysing oxygen dissociation curves. Discussing the differences in oxygen affinity. 	
	describe the cardiac cycle			Heart models

explain how heart action is initiated and controlled	Cardiac cyclePacemaker	 Observing cardiac cycle simulations. Observing heart initiation simulations. 	
explain the meaning of the terms systolic blood pressure, diastolic blood pressure and hypertension	Myogenic controlSystolic and diastolic blood pressureHypertension	Measuring blood pressure.Analysing the results.	SphygmomanometerStethoscopeResearch tools
discuss the long term consequences of exercise on the cardiovascular system	 Improved cardiac output Normal resting pulse rate Efficient cardiovascular system 	Discussing the long term consequences of exercise.	

8.12 TOPIC 4 NERVOUS CONTROL

KEY CONCEPT	OBJECTIVES	CONTENT	SUGGESTED	SUGGESTED
	Learners should be	(ATTITUDES, SKILLS	LEARNING	RESOURCES

	able to:	AND KNOWLEDGE)	ACTIVITIES AND NOTES	
8.12.1 Need for communication	recognise the need for communication systems within living organisms	NeuronesNeed for communication	 Drawing neurones from prepared slides Discussing the need for communication in living organisms. 	Prepared slides
8.12.2 Action potential	 describe the generation of an action potential explain the transmission of an action potential along a myelinated neurone 	 Action potential Resting potential Myelinated neurone (importance of sodium and potassium ions in the impulse transmission to be emphasized). 	 Illustrating the generation of an action potential. Watching simulations on transmission of an action potential. 	 ICT tools Braille software/Jaws Print media
	explain the importance of myelin sheath and the refractory period in determining speed of impulse transmission	- Myelin sheath - Saltatory conduction - Refractory period	Demonstrating saltatory conduction in myelinated neurones	

8.13 TOPIC 5 SEXUAL REPRODUCTION

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.13.1 Sexual Reproduction in Plants	describe anther structure and pollen formation	- Anther structure - Pollen formation	 Discussing anther structure and pollen formation. Observing and drawing anther structure and pollen grains. 	 ICT tools Braille software/Jaws Flowers Microscope Slides Scalpels
	describe ovule development	- Ovule development	 Dissecting flowers. Observing and drawing the cross section of the ovary. Discussing ovule 	
	 describe double fertilization explain the significance of double fertilisation in the embryo sac 	- Double fertilisation	 development. Discussing double fertilisation and its significance. Conducting educational tours to plant breeders. 	
8.13.2 Sexual Reproduction in Humans	 recognise the microscopic structure of the ovary and testis 	- Structure of the ovary and testis	Observing the microscopic structures of ovary and testis from	MammalianspecimensModelsMicroscope

describe gametogenesis	- gametogenesis	photomicrographs and prepared slides. • Observing gametogenesis	PreparedslidesPhotomicrographs
 explain how gametogenesis is controlled by hormones 	- hormonal control of gametogenesis	simulations. Outlining the processes of gametogenesis. Discussing homornal control of 	ICTBraille software/JawsPrint media
 explain in detail the role of hormones in the menstrual cycle 	- Menstrual cycle and hormones	gametogenesis. • Interpreting graphical representation of the menstrual cycle.	
 describe the process of fertilisation 	CapacitationAcrosomereactionCortical reaction	 Observing simulation of fertilization. Observing and drawing the 	
 describe the structure of the placenta explain the roles 	 Fertilisation Structure of the placenta 	structure of the placenta. Observing simulation of the	
of the placenta	TransportHormonalproduction	mechanisms in placental transfer. Debating on	
 discuss contraception and abortion from biological and ethical view points outline the role 	ContraceptionInvitrofertilizationAbortion	biological and ethical viewpoints.Discussing the role of hormones.	

of hormones in pre- menstrual tension, replacement therapy and menopause	- Role of hormones		
---	-----------------------	--	--

8.14 TOPIC 6 ECOLOGY

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.14.1 Levels of Ecological Organisation	define the terms used to describe levels of ecological organisation	SpeciesHabitatPopulationNicheCommunityecosystem	 Explaining the terms. Stating examples of each of the terms. 	• print media
8.14.2 Nitrogen Cycle	outline the nitrogen cycle	 Nitrogen cycle Roles of: nitrogen – fixing bacteria (Rhizobium) nitrifying bacteria (Nitrosomonas and Nitrobacter) denitrifying bacteria (Pseudomonas and Clostridium) 	Illustrating the nitrogen cycle. Observing leguminous root nodules.	 Print media ICT tools Braille software/Jaws legumes

8.14.3 Anthropogenic	describe the	- Human	Discussing the	 Ecosystems
Impact on Ecosystems	effects of human activities on ecosystems	settlement - Deforestation - Industrial activities - Agricultural activities - Mining - Global warming - Invasive plant species	human activities that affect the ecosystems. • Carrying out case studies.	ICT toolsBraillesoftware/Jaws
8.14.4 Conservation	explain, using specific examples, how conservation may involve preservation, management and reclamation	- conservation - role of Environmental Management Agency (EMA) and CAMPFIRE	Discussing the concept of conservation.	 ICT tools Braille software/Jaws Environmental Management Act
	discuss the conservation of the African Elephant (Loxodonta africana) and the White Rhinoceros (Ceratotherium simum)	 The African Elephantand White Rhinoceros Population numbers Reasons for concern, measures introduced International co- operation, conflict of interests 	 Evaluating trends in the population numbers of the African Elephant and White rhinoceros. Researching on other endandered species. Discussing economic implications to Zimbabwe. 	

	Conducting Educational Tours.	

8.15 TOPIC 7 BIODIVERSITY

KEY CONCEPT	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
8.15.1 Classification	identify organisms using diagnostic	- Diagnostic features of the five Kingdoms	Observing organisms.	ICT toolsBraille software/Jaws

	features of the five Kingdoms • use diagnostic features to divide kingdoms into phyla • state the taxonomic hierarchy	 Diagnostic features of phyla Kingdom Phyla Class Order Family Genus Species 	 Classifying organisms into the five Kingdoms. Collecting and classifying organisms. Outlining the taxonomic hierarchy. 	 Samples of organisms Dichotomous key
	observe the rules of binomial nomenclature	 Binomial nomenclature Genus and species names 	Discussing the rules of binomial nomenclature.	
8.15.2 Importance of Biodiversity	describe the socio-economic importance of the five Kingdoms	- socio-economic importance of I. Kingdom Prokaryotae o fermentation o bio- technology o food spoilage o decompositio	Discussing the socio-economic importance of the five kingdoms.	ICT tools Brail software/Jaws

II. Kingdom Protista	
o Plasmodium	
sp -	
malaria	
o Schistosoma	
sp –	
schistosomiasis	
o Trypanosom	
a sp -	
Trypanosomiasis	
III. Kingdom	
Fungi	
o Fermentation	
o Penicillin	
production o Decompositi	
on Decompositi	
o Food	
spoilage	
o Food	
IV. Kingdom	
Plantae	
o Producers	
o Carbon sink	
o Timber	
o Medicinal	

use o Tourism
V. Kingdom Animalia
o Tourism
o Food o Hunting
o Leather o Fishing

9.0 ASSESSMENT

9.1 Scheme of Assessment

Forms 5 and 6 Biology assessment will be based on 30% continuous assessment and 70% summative assessment.

The syllabus' scheme of assessment is grounded in the principle of equalisation of opportunities hence does not condone direct or indirect discrimination of learners.

Arrangements, accommodations and modifications must be visible in both continuous and summative assessments to enable candidates with special needs to access assessments and receive accurate performance measurement of their abilities. Access arrangements must neither give these candidates an undue advantage over others nor compromise the standards being assessed.

Candidates who are unable to access the assessments of any component or part of component due to disability (transitory or permanent) may be eligible to receive an award based on the assessment they would have taken.

NB For further details on arrangements, accommodations and modifications refer to the ZIMSEC Assessment Procedure Booklet.

a) Continuous Assessment

Continuous assessment for Forms 5 and 6 will consist of practical tests, written theory tests and a project.

Practical tests

These are practical tests that teachers give to learners individually once a term. The tests should cover manipulation of apparatus, following procedures, result collection, presentation, analysis and evaluation. A practical test consists of 100% skill C.

i) Written Tests

These are tests set by the teacher to assess the concepts covered during a term. The tests consist of multiple choice, structured and free response questions. Each test consists of 50% skill A and 50% skill B.

ii) End of course Project

Learners should have a project that will be assessed at the end of the course. The project can be set at school/district/provincial level but innovative learners should be allowed to come up with their own projects. The project consists of 70% skill C and 30 % skills A and B.

Summary of Continuous Assessment Tasks

In Terms 1 to 5, candidates are expected to have done at least the following recorded tasks:

- 5 practical tests
- 5 written theory tests
- 1 project

Detailed Continuous Assessment Tasks Table

Term	Practical tests	Written Tests	Project	Total
1	1	1		
2	1	1		
3	1	1		
4	1	1		
5	1	1	1	
6	National Examination			
Weighting	10%	10%	10%	30%

SUMMATIVE ASSESSMENT

Assessment Objectives

These describe the knowledge, skills and abilities which candidates are expected to demonstrate at the end of the course. They reflect those aspects of the aims which will be assessed.

Skill A: Knowledge with understanding

Candidates should be able to demonstrate knowledge and understanding in relation to:

- 1. biological phenomena, facts, laws, definitions, concepts, theories;
- 2. biological vocabulary, terminology, conventions (including symbols, quantities and units):
- 3. scientific instruments and apparatus used in biology, including techniques of operation and aspects of safety;
- 4. scientific quantities and their determination;
- 5. biological and technological applications with their social. economic and environmental implications.

The syllabus content defines the factual materials that candidates need to recall and explain. Questions testing the objectives above will often begin with one of the words: define, state, name, describe, explain, outline or suggest..

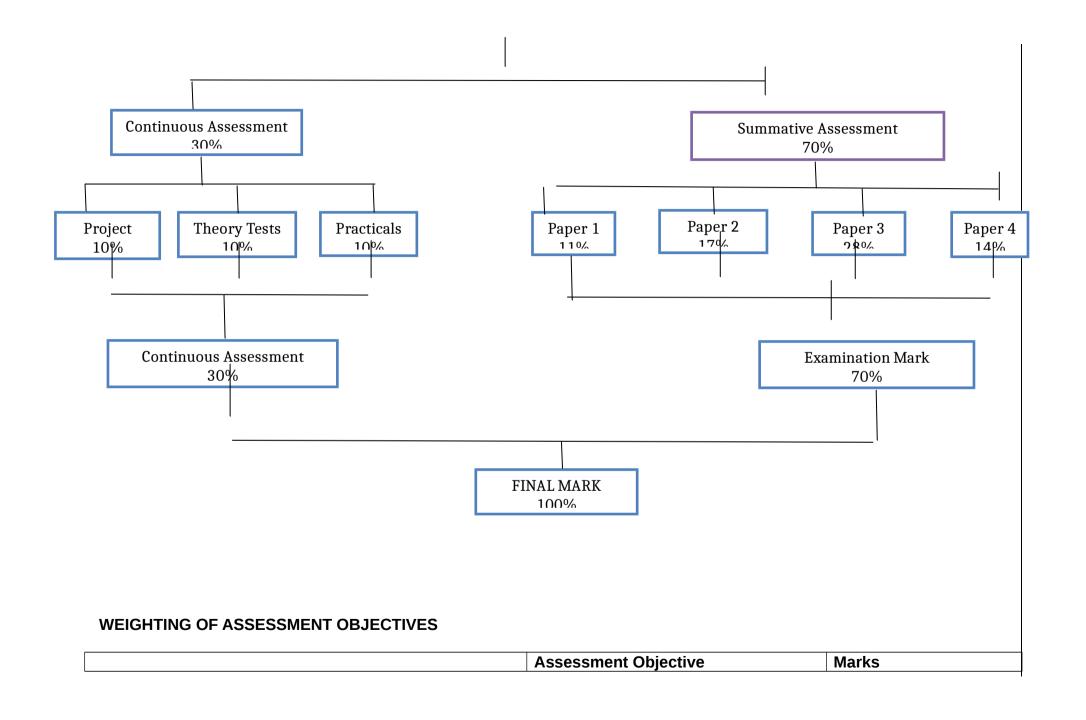
Skill B: Handling information and solving problems

Candidates should be able to use oral, written, symbolic, graphical and numerical material to:

1. locate, select, organise and present information from a variety of sources;

- 2. translate information from one form to another;
- 3. manipulate numerical and other data;
- 4. use information to identify patterns, report trends and draw inferences;
- 5. present reasoned explanation for phenomena, patterns and relationships;
- 6. make predictions and propose hypotheses;
- 7. apply knowledge, including principles, to novel situations;
- 8. solve problems.

Skill C. Experimental skills and investigations


candidates should be able to:

- 1. follow a sequence of instruction:
- 2. use techniques, apparatus and materials;
- 3. make and record observations, measurements and estimates;
- 4. interpret and evaluate observations and experimental data;
- 5. devise and plan investigations, select techniques, apparatus and materials;
- 6. evaluate methods and techniques, and suggest possible improvements.

SCHEME OF ASSESSMENT

Paper	Type of paper	Duration	Marks	Weighting
1	Multiple choice	1 Hour	40	11%
2	Theory- structured	1 Hour 30 minutes	60	17%
3	Theory- short free response essay type	2 Hours	100	28%
4	Practical test	2 Hours 30 minutes	50	14%

ASSESSMENT OF LEARNER PERFORMANCE IN FORM 5 AND 6 BIOLOGY 100%

Paper 1		
Knowledge and comprehension	Α	18
Handling information and solving problems	В	22
Paper 2		
Knowledge and comprehension	Α	25
Handling information and solving problems	В	35
Paper 3		
Knowledge and comprehension	Α	40
Handling information and solving problems	В	60
Paper 4		
Experimental skills and investigations	С	50

PAPER 1 (1 Hour - 40 marks)

This paper consists of 40 multiple choice questions. All questions will be of the direct choice type with four options. Candidates attempt all questions.

PAPER 2 (1Hour 30 minutes - 60 marks)

This paper consists of a variable number of structured questions which are compulsory.

PAPER 3 (2 Hours - 100 marks)

This paper consists of seven (7) short essay type questions. Candidates are to answer five (5) questions. Each questions carries twenty (20) marks.

PAPER 4 (2 Hours 30 minutes - 50 marks)

This paper will be a practical test set and marked by ZIMSEC. The question paper will include experiments and investigations. This paper consists of three compulsory questions of variable marks. Candidates will be expected to show evidence of the following skills in the handling of familiar and unfamiliar biological material:

- Planning
- Implementing

Interpreting, concluding and evaluating

Where unfamiliar materials/techniques are required, full instructions will be given.

Observation may be made using a microscope and/or a hand lens.

Questions involving an understanding of the use of chi- squared test may be set, but detailed computation of these tests will not be required in the examination.

Candidates will be expected to show evidence of the following skills:

- Implementing skills
- (a) Carrying out experimental work in a methodical and organised way with due regard for safety and living organisms.
- (b) Using apparatus and materials in an appropriate way.
- (c) Making and recording:
- (i) accurate and detailed observations including low power and high power drawings of a specimen.
- (ii) measurements to the appropriate degree of precision allowed by the apparatus.
 - Interpreting, concluding and evaluating skill
- (a) Assessing the reliability and accuracy of experimental data and techniques by identifying and assessing errors.
- (b) Applying knowledge to explain and interpret experimental results to reach valid conclusions.
- (c) Communicating information, results and ideas in clear and appropriate ways, including tabulation, line graphs and continuous prose.

NOTE: Examination questions on all papers may be set requiring candidates to apply knowledge to novel situations.

SPECIFICATION GRID

TOPIC	Paper 1		Paper 2		Paper 3		Paper 4
	Skill A	Skill B	Skill A	Skill B	Skill A	Skill B	Skill C
Cell structure and function							
Biological molecules and water							

Cell and nuclear division							
Genetic control							
Gene Technology							
Inherited change and evolution							
Energetics							
Transport systems							
Nervous control							
Sexual Reproduction							
Ecology							
Biodiversity							
Human health and disease							
TOTAL MARKS	18	22	25	35	40	60	100

10.0 GLOSSARY OF TERMS

The syllabus hopes that the glossary (which is relevant only to Biology) will be helpful to candidates as a guide, although it does not cover every command word that might be used in Biology exams. We have deliberately kept the glossary brief, both in numbers of terms included and also in the descriptions of their meanings. Candidates should be aware that the meaning of a term must depend, in part, on its context.

- 1. Define (the term(s)...): only a formal statement or equivalent paraphrase is required.
- 3. State: give a concise answer with little or no supporting argument (for example, a numerical answer that can easily be obtained 'by inspection').
- 4. List: give a number of points, generally each of one word. Do not give more points than the number specified.
- 5. (a) Explain: this may imply reasoning or some reference to theory, depending on the context. It is another way of asking candidates to give reasons for. The candidate needs to make sure that the examiner is told why something happens.
- (b) Give a reason/Give reasons: this is another way of asking candidates to explain why something happens.
- 6. (a) Describe: state in words the key points that can be found from the data or information given in a graph, table or diagram. Where possible, the candidate should refer to numbers taken from the

material.

- (b) Describe a process: give a step by step description of what happens during the process. Describe and explain may be used together, as may state and explain.
- 7. Discuss: the candidate should give a critical account of the points involved in the topic.
- 8. Outline: the candidate should be brief, restricting the answer to giving essentials, without supporting details.
- 9. Predict: the candidate should produce the required answer by making a logical connection between other pieces of information. The question may provide this information, or the information may depend on answers calculated in an earlier part of the question. The answer should be concise, with no supporting statement required.
- 10. Deduce: the candidate should follow the guidance for predict, but a supporting statement is also required: for example, reference to a law, a principle or the necessary reasoning should be included in the answer.
- 11. (a) Suggest: this may imply that there is no single correct answer (for example, in biology, there are a number of factors that might limit the rate of photosynthesis in a plant in a greenhouse).
- (b) Suggest: this may also imply that the candidate must apply their general knowledge and understanding of biology to a 'novel' situation, one that may not formally be 'in the syllabus'. Many

data-response and problem-solving questions are of this type.

- 12. Find: a general term that can be interpreted as calculate, measure, determine, etc.
- 13. Calculate: a numerical answer is required. In general, working should be shown, especially where two or more steps are involved. The candidate should give suitable units where possible.
- 14. Measure: this implies that a suitable measuring instrument will give the quantity in question: for example, length, using a rule, or mass, using a balance. The candidate should give suitable units where possible.
- 15. Determine: this often implies that the quantity in question cannot be measured directly but must be found by calculation, placing measured or known values of other quantities into a standard formula. It may also be used when the candidate must carry out a procedure to find a numerical answer. For example, the candidate might be asked to find the energy absorbed by a plant and calculate its efficiency.
- 16. Estimate: the candidate should give a reasoned order of magnitude statement or calculation of the quantity in question, making any necessary simplifying assumptions about points of principle and about the values of quantities not otherwise included in the question.
- 17. Show: the candidate must make an algebraic deduction to prove a given equation. The candidate must make sure to state clearly the terms being used.

- 18. (a) Sketch, when applied to graph work: this implies that the shape and/or position of the curve only needs to be qualitatively correct. However, the candidate should be aware that, depending on the context, some quantitative aspects may be looked for, such as passing through the origin or having an intercept, asymptote or discontinuity at a particular value. On a sketch graph, the candidate must show clearly what is being plotted on each axis.
- (b) Sketch when applied to diagrams: this implies that simple, freehand drawing is allowed. However, the candidate should take care over proportions and should show important details clearly.
- 19. Compare: the candidate must give both the similarities and differences between things or concepts.
- 20. Recognise: the candidate should identify facts, characteristics or concepts that are relevant and/or appropriate to understanding a situation, event, process or phenomenon.
- 21. Classify: the candidate should group things based on common characteristics.

In all questions, the number of marks are shown on the examination paper and candidates should use these as a guide to how much detail to give. When describing a process, the candidate should use the number of marks to decide how many steps to include. When explaining why something happens, the candidate should use the number of marks to decide how many reasons to give, or how much detail to give for each reason.

22. Evaluate: to judge the value or condition of something in a careful and thoughtful way

		1