MINISTRY OF PRIMARY AND SECONDARY

CHEMISTRY SYLLABUS

FORM 5-6

EDUCATION

SUBJECT CODE:

2015 - 2022

Curriculum Development And Technical Services P.O. Box MP 133 Mount Pleasant Harare

© All Rights Reserved Copyright (2015)

i

ACKNOWLEDGEMENTS

The Ministry of Primary and Secondary Education wishes to acknowledge the following for their valued contribution in the production of this syllabus:

- Panellists for Form 5 and 6 level Chemistry syllabus
- Zimbabwe School Examinations Council (ZIMSEC)
- Government Departments
- Ministry of Higher and Tertiary Education, Science and Technology Development
- United Nations Children's Fund (UNICEF)
- United Nations Educational Scientific and Cultural Organisation(UNESCO)

1.0 Preamble11.1 Introduction11.2 Rationale11.3 Summary11.4 Assumptions21.5 Cross-cutting themes.22.0 Presentation of Syllabus.23.0 Aims24.0 Objectives35.0 Methodology and time allocation.36.0 Topics47.0 Scope and Sequence.58.0 Competency matrix.49.0 Assessment49(a) Assessment Objective50(b) Scheme of assessment51(c) Specification5210.0 Glossary/Appendices55	
2	

1. PREAMBLE

1.1. Introduction

This two year syllabus is designed to put greater emphasis on the understanding and application of chemistry concepts and principles in an environmental friendly and sustainable manner. It makes learners identify and solve problems practically in a scientific manner. The Form 5 and 6Chemistry syllabus is inclusively made to cater for **all** categories of learners in an increasingly technological world.

1.2. Rationale

Chemistry plays a pivotal role in the technological development of any country since it is embedded in our everyday life. The study of Chemistry enables learners to be creative and innovative in industry and society by promoting the application of Chemistry in industrial processes for value addition, beneficiation of natural resources and harnessing of available opportunities for entrepreneurship.

The Chemistry syllabus enables learners to develop the following skills:

- Problem solving
- Critical thinking
- Decision making
- Production
- Research
- Conflict resolution
- Leadership
- Self-management
- Communication
- Technological innovation
- Enterprise

1.3. Summary of content

Form 5 and 6 Chemistry syllabus will cover theory and practical activities in the following areas:

- Physical Chemistry
- Inorganic Chemistry
- Organic Chemistry
- Applied Chemistry

1.4. Assumptions

It is assumed that learner:

- have passed 'O' level Chemistry
- are familiar with ICT Tools and Braille/Jaws software
- have passed 'O' level Mathematics
- are familiar with laboratory apparatus
- are aware of laboratory safety precautions

1.5. Cross- Cutting Themes

The Chemistry learning area encompasses the cross cutting themes listed below:

- Inclusivity
- Environmental issues
- Indigenous knowledge system
- Enterprise Education
- Life skills
- Team work
- Food security
- Safety and health issues
- Disaster and risk management
- HIV/ AIDS

2.0 PRESENTATION OF THE SYLLABUS

The Form 5 and 6 Chemistry syllabus is a single document covering Forms 5 and 6.

3.0 AIMS

The aims are to:

- enable learners to develop fundamental principles of Chemistry for application in life and as a basis for further studies in Chemistry and related disciplines.
- inculcate in learners the need for safety and protection of the environment in the study of Chemistry.
- create opportunities for learners to acquire research, experimental, practical, enterprising and technological skills in Chemistry.
- appreciate the usefulness and limitations of the scientific method in the study of Chemistry.
- stimulate in learners the desire to apply Chemistry for the benefit of society as guided by the principles of Unhu/Ubuntu/Vumunhu.

- promote awareness that the applications of Chemistry may be both beneficial and detrimental to the individual and the community.
- develop in learners the appreciation of the use of Chemistry in value creation, addition and beneficiation.

2. SYLLABUS OBJECTIVES

Learners should be able to:

- follow instructions in practical work
- make and record observations
- use ICT Tools and Braille/Jaws software to simulate Chemistry phenomena
- apply safety measures in all practical work
- present, analyse and interpret data to establish relationships
- demonstrate knowledge on facts, laws, definitions and concepts of Chemistry
- measure and express quantities to a given level of accuracy and precision
- design a practical solution to a real life problem using knowledge of Chemistry

5.0 Methodology and Time Allocation

5.1 Methodology

Some of the learner centred and multi-sensory methodologies used in the teaching and learning of Chemistry are suggested below. The principles of individualisation, concreteness, totality and wholeness, stimulation and hands-on experience should guide the teachers as they employ the suggested methods:

- Demonstrations
- Experimentation
- Research
- Models
- Site visits
- Simulations
- Seminars
- Discovery
- Exhibitions
- Work related learning

5.2 Time Allocation

For adequate coverage of the syllabus, a time allocation of 8 theory 40minutes periods and a block of 4 practical periods per week is recommended. Learners should be engaged in at least one Educational Tour per term, one exhibition per year, and an attachment of one week in any chemical related industry during the course

6.0 TOPICS

6.1Physical Chemistry:

- Atoms, Molecules and Stoichiometry
- Atomic structure
- Chemical bonding
- States of matter
- Chemical energetics
- Electrochemistry
- Equilibria
- Reaction kinetics

6.2 Inorganic Chemistry:

- Chemical Periodicity of period 3
- Chemistry of Group II elements
- Chemistry of Group IV elements
- Chemistry of Group VII elements

6.3 Organic Chemistry:

- Hydrocarbons
- Halogen derivatives
- Hydroxy compounds
- Carbonyl compounds
- Carboxylic acids and derivatives
- Nitrogen compounds
- Polymerisation

6.4 Applied Chemistry

- Transition Elements
- Phase Equilibria
- Environmental Chemistry
- Nano Chemistry

- Chemistry of Nitrogen and Sulphur

7.0 SCOPE AND SEQUENCE CHART

FORM 5 AND FORM 6

	1	
TOPIC	FORM 5	FORM 6
7.1 PHYSICAL CHEMISTRY:		
Atoms, Molecules and Stoichiometry	 Relative masses of atoms and molecules Mass spectra The mole and Avogadro constant Empirical and molecular formulae Stoichiometric calculations 	 Stoichiometric reaction ratios Titration Percentage yield and percentage purity
Atomic structure	 Sub-atomic particles Electronic configurations Ionisation energy 	
Chemical bonding	 Ionic bonding Covalent bonding Bond reactivity Dative bonding Shapes of molecules Metallic bonding 	
States of matter	 Intermolecular forces Gaseous state Liquid state Solid state 	
Chemical energetics	 Enthalpy changes Hess' Law and Born-Haber cycles Charge density 	
Electrochemistry	 Redox processes Electrode potentials Electrolysis of acidified water Electrolytic purification of copper/nickel Extraction of aluminium 	 Redox titration Fuel cells Quantitative electrolysis

FORM 5 SYLLABUS

8.0COMPETENCY MATRIX

8.1 PHYSICAL CHEMISTRY

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Atoms, Molecules and Stoichiometry	 explain the terms relative atomic, isotopic, molecular and formula masses. analyse mass spectra in terms of isotopic abundances and molecular fragments. relate a mole to Avogadro constant. determine empirical and 	 Relative masses of atoms and molecules Mass spectra The mole and 	 Defining the terms relative atomic, isotopic, molecular and formula masses. Analysing mass spectra Calculating relative atomic mass from given mass spectra and isotopic abundances. Calculating number of moles in relation to Avogadro constant. Analysing combustion and composition data to deduce empirical and molecular 	 A Level Science Kit Periodic table charts Mass spectra charts

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	 molecular formulae using combustion data or composition by mass. construct balanced equations perform calculations.including the use of mole concept involving reacting masses, volumes of gasses, volumes and concentrations of solutions. 	 Avogadro constant Empirical and molecular formulae Stoichiometric calculations 	formulae. • Conducting practical analysis of stoichiometric relationships involving acid- base titrations and combustion	 Dilute hydrochloric acid and sodium hydroxide
Atomic structure	 describe the behaviour of sub-atomic particles in an electric field. describe electronic configuration of elements in terms of s, p and d orbitals for 1, 2, and 3 quantum numbers. describe the shapes of s and p orbitals. explain the term ionisation energy. deduce the electronic configuration from successive lonisation 	 Sub-atomic particles Electronic configurations Ionisation energy (IE) 	 Explaining the behavior of sub-atomic particles and ions in an electric field. Deducing electronic configuration of atoms and ions. Drawing and describing shapes of orbitals. Analyzing successive ionization energies to deduce configuration. 	 A -level science kit Periodic table Graph papers ICT Tools and Braille/Jaws software

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	energy (IE) data.			
Chemical bonding	 Describe ionic bonding as in sodium chloride, magnesium oxide and aluminium oxide. describe covalent bonding as in hydrogen, oxygen, chlorine, carbon 	 Ionic bonding Covalent bonding 	 Discussing ionic bonding Drawing 'dot and cross' diagrams. Discussing covalent bonding. Drawing 'dot and cross' diagrams. 	 Form 5 and 6 Science Kit ICT Tools and Braille/Jaws software
	 dioxide, hydrogen chloride, ethane, ethene and benzene in terms of orbital overlap. compare the reactivity 	Bond reactivity	 Relating bond reactivity to bond energy, bond length and bond polarity. 	
	of covalent bonds in terms of bond length, bond energy and bond polarity. • describe dative bonding as in the	Dative bonding	 Discussing dative bonding Drawing 'dot and cross' diagrams 	
	formation of ammonium ion and aluminium chloride	Shapes of molecules	 Illustrating bonding and shapes using models. 	
	 (Al₂Cl₆) explain the shapes of and bond angles in 	Metallic bonding		

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	 molecules using electron pair repulsion; Valency Shell Electron Pair Repulsion) (VSEPR) theory. describe metallic bonding in terms of a lattice of positive ions that are surrounded by mobile electrons. describe, interpret or predict the effects of type of bonding on physical properties. 	• Intermolecular bonds		
States of matter	 describe intermolecular forces based on permanent and induced dipoles. outline the importance of hydrogen bonding to physical properties of substances. 	 Intermolecular forces: -Van der Waals -Hydrogen bonding -Permanent dipole – permanent dipole interaction 	 Experimenting to show bond polarity. Experimenting with ice and water to show Hydrogen-bonding. Discussing the importance of intermolecular forces to properties of 	 Jet of water Paraffin Plastic ruler Polythene rod Perspex roc Ice Copper wire Tungsten wire

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	 state the basic assumptions of the kinetic theory as applied to an ideal gas. explain the validity of the kinetic theory of gases as applied to real gases use the general gas.equation <i>pV=nRT</i>, in calculations describe using a kinetic molecular model, the liquid state, solid state and the interconversion of states. describe the lattice structure of a crystalline solid which is ionic, simple molecular, hydrogen bonded and metallic. 	 Gaseous state Liquid state Solid state 	 substances. Discussing the assumptions of the kinetic theory as applied to ideal gases. Calculating using general gas equation. Illustratingthe behavior of particles using a molecular model. Discussing the lattice structures of sodium chloride, iodine, ice, copper, silicon dioxide, diamond and graphite. 	• Models
Chemical Energetics	explain that chemical reactions are	Enthalpy changes of: -Reaction	Experimenting to show energy changes (austhermic and	Form 5 and 6 Science Kit

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	 energy changes mostly in the form of heat energy. explain the terms enthalpy changes, standard enthalpy changes, bond energy and lattice energy calculate enthalpy changes using vc∆ T apply Hess Law to construct energy cycles and Born- Haber cycles. calculate enthalpy changes using energy cycles and Born- Haber cycles. calculate enthalpy changes using energy cycles and Born-Haber cycles. explain the factors affecting the size of lattice energy. 	 -Combustion -Neutralisation -Hydration -Solution -lattice -electron affinity Hess Law and Born- Haber cycles Charge density 	 endothermic). Discussing the various enthalpy changes Experimenting to make fertilizer and calculating heat changes. Carrying out thermometric titrations. Plotting graphs of quantity against temperature. Constructing and analyzing Born-Haber cycles. Discussing factors affecting lattice energy. 	and Braille/Jaws software
Electrochemistry	 describe redox processes in terms of electron transfer and changes in oxidation state. 	Redox processes	 Discussing reduction and oxidation in terms of electron transfers. Experimenting on redox reactions. 	Form 5 and 6 Science Kit

TOPIC	OBJECTIVES	CONTENT	SUGGESTED LEARNING	SUGGESTED
	Learners should be able to:	(ATTITUDES, SKILLS AND KNOWLEDGE)	ACTIVITIES AND NOTES	RESOURCES
	 describe the terms standard electrode potential and standard cell potential. describe the measurement of electrode potentials using the standard hydrogen electrode. predict the feasibility of the reaction from standard cell potential. describe the production of hydrogen, oxygen, aluminium, copper, nickel and chlorine by electrolysis. predict the identity of the substance liberated during electrolysis from the 	 Electrolysis of acidified water Electrolytic purification of copper/nickel Extraction of aluminium Production of chlorinefrom brine 	 Drawing the standard hydrogen electrode. Calculating standard cell potentials. Experimenting on electrolysis of acidified water and copper sulphate. Discussing electrolytic production of aluminum and chlorine. 	

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	state of electrolyte, position in the redox series and concentration.		BR	
Equilibria	 explain the terms reversible reaction and dynamic equilibrium. deduce expressions for equilibrium constants in terms of concentrations (K_c) and partial pressures (K_p) calculate the values of K_c, K_p and the quantities present at equilibrium state Le Chatelier's principle and apply it to deduce effects of changes in temperature, concentration or pressure on a system at equilibrium. 	 Chemical equilibria Equilibrium constants Le Chatelier's principle and factors affecting equilibrium Ionic equilibria Bronsted-Lowry 	 Discussing reversible reactions and dynamic equilibria. Deducing equilibrium expressions. Calculating the values ofK_c, K_p and quantities present at equilibrium Deducing direction of shift of equilibrium position using Le Chatelier's principle. 	Form 5 and 6 Science Kit
	apply the Bronsted-	theory of acids and bases	Discussing the	

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	 acids and bases Distinguish between strong and weak acids and bases in terms of extent of dissociation Calculate [H⁺(aq)] and pH values for strong and weak acids and bases Explain the terms pH, Ka, pKa, pOH, Kb, pKb, Kw, pKw and apply them in calculations. Explain the choice of suitable indicators for acid-base titrations given appropriate data. Describe graphically the changes in pH during acid-base titrations. 	 pH and pOH Acid and base dissociation constants Choice of indicators Titration curves 	 Bronsted-Lowry theory, strengths of acids and bases. Calculating pH, K_a, pK_a, pOH, K_b, pK_b, K_w, pK_wvalues of acids and bases Discussing the choice of suitable indicators for acid-base titrations. Drawing titration curves from experimental data. 	 Citrus fruits Vinegar Flowers Soft drinks Ashes Household detergent
Reaction Kinetics	device suitable experimental techniques for studying the rate ofreaction from given information	methods of measuring reaction ratesRate equations	 Experimenting on techniques for studying the rate of reaction. Discussing the 	 Form 5 and 6 Science Kit ICT Tools and Braille/ laws
			terms:rate of reaction,	software

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURCES
	 explain the terms: rate of reaction, activation energy, rate equation, order of reaction, rate constant, half-life; rate determining step and catalysis. explain in terms of collisions the effect of concentration changes and temperature on the rate of a reaction. explain effect of temperature change in terms of the Boltzmann distribution on the rate of reaction explain that in the presence of a catalyst a reaction has a different mechanism i.e. one of lower activation energy. construct rate equations of the form 	• Factors affecting rates of reactions	 activation energy, rate equation order of reaction; rate constant, half-life rate, determining step and catalysis. Experimenting on factors affecting rates of reactions. Drawing Boltzmann distribution curves and reaction profile diagrams. Constructing rate equations from experimental data 	• Graph books

TOPIC	OBJECTIVES	CONTENT	SUGGESTED LEARNING	SUGGESTED
	Learners should be able	(ATTITUDES, SKILLS	ACTIVITIES AND NOTES	RESOURCES
	to:	AND KNOWLEDGE)		
	 rate =k[A]^m[B]ⁿ for which <i>m</i> and <i>n</i> are 0, 1 or 2. calculate initial rate, half-life and rate constant deduce the order of reaction using initial rate method and concentration time graphs. show graphicallythat the half –life of a first order reaction is constant. deduce a mechanism from the order of reaction and vice versa. 	• Mechanism of reactions	 Calculating initial rate, half-life and rate constant. Deducing the order of reaction using initial rate method and concentration time graphs. Constructing reaction mechanisms. 	

8.2 INORGANIC CHEMISTRY

ΤΟΡΙϹ	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
Chemical Periodicity of period 3	 describe the variations in atomic radius, ionic radius, ionic radius, ionisation energy, melting point and electrical. conductivity of period 3 elements. explain the variation in atomic radius, ionic radius and first ionisation energy. interpret the variation in melting point and electrical conductivity in terms of bonding and structure. describe the reactions if any, of elements with oxygen, chlorine and water. explain the variation in oxidation number of oxides 	 Variation in Physical properties Variation in Chemical properties 	 Discussing trends in physical properties. Analysing data and sketching graphs on variations in physical properties. Burning magnesium 	 Graphs Data booklets ICT Tools and Braille/Jaws software

	1			
TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
	 and chlorides. describe the acid base behaviour of oxides describe the reactions of oxides and chlorides with water. suggest the type of bonding present in chlorides and oxides from their physical and chemical properties. 		 ribbon. Reacting sodium and magnesium with cold water <u>*NB:</u> Sodium explodes in water Dissolving oxides and chlorides in water and testing their pH. Relating physical properties to bonding. 	 Form 5 and 6 Science Kit Sodium chloride Magnesium chloride Aluminium oxide Aluminium chloride
Chemistry of Group II elements	 interpret the trends in physical properties. 	Trends in Physical properties	Justifying trends in physical properties using data booklet values.	Data booklet

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
	 describe the reactions of the elements with oxygen and water. 	 Trends in Chemical properties 	 Experimenting on the reactions of elements with water and oxygen. Dissolving oxidos in 	A level Science kit
	• describe the behaviour of oxides with water.		 Dissolving oxides in water and testing for pH. Heating carbonates 	pH meter
	 explain the variation in thermal decomposition of the carbonates and nitrates. 		and nitrates;testing products produced.	
	• explain the variation in solubility of the sulphates.		 Dissolving magnesium sulphate, calcium sulphate and barium sulphate in water. 	
	 state the properties and uses of group II 	 Properties and uses of Group II compounds 	• Discussing uses of magnesium oxide, calcium oxide,	 magnesium

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
	compounds.		calcium carbonate, magnesium.sulphat e, calcium sulphate, barium sulphate, magnesium hydroxide and magnesium trisilicate(MMT)	 oxide, calcium oxide, calcium carbonate, magnesium sulphate, calcium sulphate, barium sulphate, magnesium hydroxide and magnesium trisilicate (MMT) Site visits
Chemistry of Group IV elements	 explain the variations in melting and in electrical conductivity of the elements. explain the variations in bonding, acid-base nature and thermal stability of the oxides of oxidation states II 	Trends in Physical properties	 Discussing trends in physical properties. Experimenting with Lead (IV) oxide, charcoal and coal. 	 Form 5 and 6 Science Kit Lead (IV) oxide ICT Tools and Braille/Jaws software

ΤΟΡΙϹ	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
	 & IV. describe the bonding, molecular shape and volatility of the tetrachlorides. explain reactions of the tetrachlorides with water in terms of structure and bonding. describe the relative stability of higher and lower oxidation states of the elements in their oxides and aqueous solutions. recognise the properties and uses of the elements and their compounds. 	 Trends in Chemical properties Properties and uses of Group IV elements and compounds 	 Constructing molecular shapes using models. Discussing the behaviour of tetrachlorides with water and organic solvents. Experimenting with Lead (IV) oxide. Discussing properties and uses of elements and compounds such as glass, ceramics, tooth filler, diamond, graphite, carbon- tetrachloride. 	Site visits

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
Chemistry of Group VII elements	 describe the trends in volatility and colour of chlorine, bromine and iodine. interpret the volatility of elements in terms of Van der Waal forces. explain the relative reactivity of elements as oxidising agents 	 Trends in Physical properties Trends in Chemical properties 	 Discussing the trends in volatility and colour of chlorine, bromine and iodine. 	 Form 5 and 6 Science Kit ICT Tools and Braille/Jaws software Site visits
	 with reference to E^o values. explain the reactions of elements with hydrogen explain the relative thermal stabilities of the hydrides in terms of bond energies. 		 Calculating E^o cell values and changes in oxidation states for the reactions between halogens and sodium thiosulphate. Discussing the reactions of elements with hydrogen and relative thermal 	
	 describe the reactions of the halide ions with silver ions followed by aqueous ammonia and with concentrated sulphuric acid describe the reaction of chlorine 	 Properties and uses of Group VII elements and compounds 	stabilities of resulting hydrides.Testing for halide ions	

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
	 with cold and hot aqueous sodium hydroxide. explain the industrial importance and environmental significance of the halogens and their compounds. 		 Discussing the industrial importance and environmental significance of halogens and their compounds (e.g. bleaches, PVC, halogenated hydrocarbons as solvents, refrigerants, aerosols and chlorine in purification of water). 	
 Chemistry of Nitrogen and Sulphur 	 explain the lack of reactivity of nitrogen. describe the formation and structure of the ammonium ion and its reaction with alkalis. explain the manufacture of ammonia by the Haber 	 Chemical properties of Nitrogen Haber Process 	 Discussing the chemical properties of nitrogen. Discussing the formation and structure of the ammonium ion. Experimenting on the laboratory preparation of 	 Form 5 and 6 Science Kit ICT Tools and Braille/Jaws software Site visits Resource persons

ΓΟΡΙϹ	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
	process in terms of the principles of kinetics and equilibria.	Contact Process	ammonia.	
	• explain the manufacture of sulphuric acid by the Contact process in terms of the principles of kinetics and equilibria.		• Discussing the Haber process and the Contact process(the kinetics and equilibria).	
	• recognise the industrial importance of sulphuric acid and ammonia.		 Preparing ammonium sulphate in the laboratory. 	
	 recognise the environmental consequences of compounds of nitrogen and sulphur. 	Environmental impacts of Nitrogen and Sulphur compounds	Discussing the environmental consequences of nitrates, nitrogen oxides, sulphur oxides.	
	 explain the catalytic removal of oxides of 		• Discussing the removal of oxides of nitrogen from car	

ΤΟΡΙϹ	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED NOTES AND ACTIVITIES	SUGGESTED RESOURCES
	 nitrogen. describe the use of sulphur dioxide in food preservation. 		exhausts and use of sulphur dioxide.	

FORM 6 SYLLABUS

8.3 PHYSICAL CHEMISTRY

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
Atoms, Molecules and	 calculate, using the mole concept the reacting 	Stoichiometric reaction ratios	Computing reacting masses, volumes of gases, volumes	Form 5 and 6 Science Kit

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
Stoichiometry	 masses, volumes of gases, volumes and concentrations of solution. determine stoichiometric relationships from calculations. 	Titration	 and concentrations of solution from given data Performing acid-base titrations'. Deducing stoichiometric relationships from titration results. Constructing balanced 	 ICT Tools and Braille/Jaws software
	calculate percentage yield and percentage purity.	Percentage yield and percentage purity	equations.	
Electrochemistr y	 use redox titration results in quantitative analysis. describe how the hydrogen oxygen fuel cell operate. deduce electrode reactions from a given fuel cell. 	Redox titrationFuel cells	 Performing redox titrations Discussing the composition and electrode reactions of fuel cells. Citing advantages and disadvantages of fuel cells. 	 Form 5 and 6 Science Kit ICT Tools and Braille/Jaws software
	conventional cells.		over conventional cells.	
	 Calculate the quantity of charge, mass and or volume of substance liberated during electrolysis using the relationship, F=Le (Faraday constant, the Avogadro constant and the charge on 	electrolysis	 Determining the quantity of charge, mass and or volume of substance liberated during electrolysis 	

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
	 the electron) describe how to determine a value of Avogadro constant by an electrolytic method. 		• determining experimentally the value of the Avogadro constant.	
Equilibria	 explain how buffer solutions control pH. calculate the pH and/or pOH of buffer solutions. apply the concept of solubility product, K_{sp} calculate K_{sp} from concentrations and vice versa explain the common ion effect 	 Buffer solutions Solubility products 	 Discussing buffer solutions including their role in controlling blood and soil pH. Preparing buffer solutions Determining pH and pOH of buffer solutions Calculating solubility products from concentrations and vice versa including common ion effect 	 Form 5 and 6 Science Kit ICT Tools and Braille/Jaws software
Reaction kinetics	 Outline the different modes of action of homogeneous and heterogeneous catalysis as exemplified in the Haber process, catalytic removal of oxides of nitrogen in the exhaust gases from car engines, the redox reaction between I⁻ and S₂O₈²⁻ and catalytic role of NO_xin the oxidation of atmospheric sulphur dioxide. 	 Catalysis -Homogeneous -Heterogeneous 	 Discussing the different modes of action of homogeneous and heterogeneous catalysis such as Fe in the Haber process and Fe²⁺ in l⁻and S₂O₈²⁻ reaction. Carrying out experiments on decomposition of hydrogen peroxide catalysed by manganese (IV) oxide. 	 Form 5 and 6 Science Kit ICT Tools and Braille/Jaws software

8.4 ORGANIC CHEMISTRY

TOPIC	OBJECTIVES	CONTENT	SUGGESTED LEARNING	SUGGESTED
	Learners should be able to:	(ATTITUDES, SKILLS	ACTIVITIES AND NOTES	RESOURSES
Hydrocarbons	use the nomenclature,structural	Nomenclature	Discussing nomenclature,	Form 5 and 6
	formulae and displayed formulae for hydrocarbons from C ₁ to C ₁₀		general formula and displayed formulae for hydrocarbons from C_1 to C_{10}	Science Kit ICT Tools and Braille/Jaws
	found in hydrocarbons		 Indistrating forms of isomerism using molecular models 	software

FOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
	 explain the use of crude oil and natural gas as sources of hydrocarbons explain the decrease in volatility with increasing carbon chain describe the chemical reactions of alkanes, alkenes and arenes describe the mechanism of free radical substitution, electrophilic addition and electrophilic substitution 	 Preparation and occurrence Physical properties Chemical properties Reaction mechanisms 	 Discussing the process of fractional distillation of crude oil Discussing the physical properties of hydrocarbons Experimenting with cooking oil or paraffin to demonstrate cracking Discussing the chemistry of alkanes as exemplified by the following reactions of ethane: Combustion Free radical substitution by chlorine and its mechanism Discussing the chemistry of alkenes as exemplified by the following reactions of ethane: Combustion Eree radical substitution by chlorine and its mechanism Discussing the chemistry of alkenes as exemplified by the following reactions of ethene: Electrophilic addition of steam, hydrogen halides and halogens including mechanism Catalytic addition of hydrogen Oxidation by cold dilute manganate (VII) ions to form diol Oxidation by hot concentrated manganate (VII) ions Polymerisation 	models • Cooking oil • Paraffin

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
			 following reactions of benzene and methyl benzene : Electrophilic substitution with bromine including mechanism Nitration including mechanism Oxidation of the side chain Predicting whether halogenation will occur on the side chain or on the aromatic nucleus in arene 	
Halogen derivatives	 use the nomenclature and displayed formula of halogenoalkanes and halogenoarenes describe the isomerism associated with halogen derivatives 	Nomenclature Isomerism	 Drawing displayed structures and naming them Discussing isomerism associated with halogen derivatives 	 Form 5 and 6 Science Kit ICT Tools and Braille/Jaws software Journals Bromoethane Silver nitrate Aerosols
	 describe the following nucleophilic substitution reactions of halogenoalkanes as exemplified by the reactions of bromoethane: hydrolysis, formation of nitriles and formation of primary amines by reaction with ammonia describe the mechanism of 	Chemical properties	 Experimenting with bromoethane, silver nitrate and hot water to show substitution Writing equations and formulae of products from nucleophilic substitution 	• Plastics

OPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
	nucleophilic substitution in halogenoalkanes		 Describing the mechanism of nucleophilic substitution in terms of S_N1 and S_N2 	
	 explain the elimination of hydrogen bromide from 2- bromopropane interpret the different 		• Experimenting with ethanolic sodium hydroxide and bromopropane to show elimination	
	reactivities of halogenolkanes and chlorobenzene with particular reference to hydrolysis and to the relative strengths of the C-Hal bonds		• Comparing the strengths of the C-Hal bonds and relating them to reactivity	
	 explain the uses of fluoroalkanes and fluorohalogenoalkanes in terms of their relative chemical inertness recognise the concern about the effect of 		• Discussing the uses of fluoroalkanes and fluorohalogenoalkanes and their effects on the environment	
	chlorofluoroalkanes on the ozone layer	Uses and environmental impact		
ydroxy	 use the nomenclature and 	Nomenclature	• Discussing the structure,	• Form 5 and

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
compounds	 displayed formulae to describe the structure of primary, secondary and tertiary alcohols describe the isomerism associated with alcohols 	Isomerism	 nomenclature and classification of alcohols Drawing structures of optical and structural isomers 	Science Kit • ICT Tools and Braille/Jaws software
	 describe the manufacture of ethanol using fermentation process explain the physical properties of hydroxy compounds in terms of bonding 	Manufacture of ethanolPhysical properties	 Preparing of ethanol by fermentation using locally available resources Discussing the solubility and volatility of alcohols 	 Marula Baobab Fruits Grapes
	 describe the reactions of alcohols as exemplified by ethanol during combustion, substitution to give halogenoalkanes, reaction with sodium, oxidation to carbonyl compounds and carboxylic acids, dehydration and ester formation 	Chemical properties of alcohols	 Discussing reactions of alcohols Distinguishing between primary, secondary and tertiary alcohols by oxidation reactions 	 Ethanol Acidified potassium dichromate Propan – 2-ol 2methylpropar

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
	 describe the reaction of the methyl secondary alcohol with alkaline iodine 		 Deducing the presence of CH₃ CH (OH) – group in an alcohol using alkaline aqueous iodine 	– 2-ol
	 describe the reactions of phenol with bases, sodium and during nitration and bromination of the aromatic ring 	Chemical properties of phenols	Discussing the reactions of phenol	
	 explain the relative acidities of water, phenol and ethanol 		• Comparing the acidity of water, phenol and ethanol	
Carbonyl compounds	use the nomenclature and displayed formulae to describe the structure of aldehydes and ketones	Nomenclature	 Discussing the nomenclature and displayed formulae of aldehydes and ketones 	 Form 5 and 6 Science Kit ICT Tools and Braille/Jaws software
	 explain the isomerism associated with aldehydes and ketones 	Isomerism	• Drawing structures to illustrate the isomerism in carbonyl compounds	EthanolAcidified
	 describe the formation aldehydes and ketones from primary and secondary 	Preparation	Preparing aldehydes and ketones from respective alcohols	potassium dichromatePropan – 2-ol

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
	 alcohols respectively outline the mechanism of nucleophilic addition reaction of hydrogen cyanide with aldehydes and ketones describe the reduction of aldehydes and ketones using NaBH₄ suggest a suitable test for a given carbonyl compound 	Chemical properties	 Analysing the mechanism of nucleophilic addition reaction of hydrogen cyanide with aldehydes and ketones Discussing the reactions of carbonyl compounds, with NaBH₄, 2.4-DNPH, Fehling's solution, alkaline iodine and Tollens reagent 	
Carboxylic acids and derivatives	 interpret the nomenclature and formulae of carboxylic acids and their derivatives describe the formation of carboxylic acids from alcohols, aldehydes and nitriles recall the reactions of carboxylic acids in the 	 Nomenclature Preparation and occurrence Chemical properties 	 Drawing displayed formulae for carboxylic acids and their derivatives Preparing carboxylic acids and esters Constructing equations for the reactions of carboxylic acids 	 Form 5 and 6 Science Kit ICT Tools and Braille/Jaws software

OPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
	 formation of salts, esters and acyl chlorides explain the acidity of carboxylic acids and of chlorine substituted ethanoic acids in terms of their structures describe the reactionsof acyl chlorides with water, alcohols, phenols and primary amines explain the relative ease of hydrolysis of acyl chlorides, alkyl chlorides and aryl chlorides illustrate the formation of esters from carboxylic acids or acyl chlorides using ethyl ethanoate and phenyl benzoate as examples describe the acid and base hydrolysis of esters 		 Comparing the acidity of carboxylic acids and substituted carboxylic acids Discussing the reactions of acyl chlorides with water, alcohols, phenols and primary amines Discussing the relative ease of hydrolysis of acyl chlorides, alkyl chlorides and aryl chlorides Preparing esters from carboxylic acids or acyl chlorides Manufacturing soap from fats and oils Investigating uses of carboxylic acids and esters 	• Vinegar

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
	 state the uses of carboxylic acids and esters 	Uses of carboxylic acids and esters		FatsOilsAsh
Nitrogen compounds	describe the formation of ethylamine by reduction of nitrile and of phenylamine by reduction of nitrobenzene	Preparation and occurrence	Discussing the formation of ethylamine by reduction of nitrile and of phenylamine by reduction of nitrobenzene	 Form 5 and 6 Science Kit ICT Tools and Braille/Jaws software
	• explain the relative basicity of ammonia, alkylaminesand phenylamines in terms of their structures	Chemical properties	 Comparing the relative basicity of ammonia, alkylamines and phenylamines in terms of their structures 	
	 describe the reaction of phenylamine with: aqueous bromine nitrous acid 		 Discussing the reactions of phenylamine with aqueous bromine and with nitrous acid Discussing the hydrolysis of diazonium salt to give phenol 	
	 describe the coupling of benzenediazonium chloride 		Synthesizing dyestuff	

TOPIC	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
	 and phenol and the use of similar reactions in the formation of dyestuff describe the formation of amides from the reaction between RNH₂ and R'COCI 		Discussing the formation and hydrolysis of amides	DyestuffNitrous Acid
	 describe acid-base hydrolysis of amides investigate the acid/base properties of amino acids and the formation of zwitterions illustrate the formation of peptide bonds in protein and polypeptide formation 	• amides	 Deducing the product of hydrolysis of amides Analysing the acid/base properties of amino acids i.e. from titration curves Constructing equations to show formation of peptide bonds 	
	 describe the hydrolysis of proteins 		Drawing structures of the products of hydrolysis	
Polymerisation	 Describe the characteristics of addition polymers as examplified by polythene and PVC explain condensation 	 Types of Polymerisation -addition - condensation 	Classifying polymers Drawing repeat units	 Samples of polymers ICT Tools and Braille/Jaws

ΤΟΡΙϹ	OBJECTIVES Learners should be able to:	CONTENT (ATTITUDES, SKILLS AND KNOWLEDGE)	SUGGESTED LEARNING ACTIVITIES AND NOTES	SUGGESTED RESOURSES
	 polymerisation as in polyesters and polyamides predict the type of polymerisation reaction for a given monomer or pair of monomers deduce the repeat unit of a polymer obtained from a given monomer or pair of monomers identify the monomer(s) present in a given section of a polymer molecule recognise the uses of polymers 	Uses of polymers	 from given monomers or sections of polymers and vice versa Building models of polymers Discussing uses of polymers Visiting sites 	software • Molecular models

			Visiting sites	
8.5 APPLIED	CHEMISTRY			
TOPIC	OBJECTIVES		SUGGESTED LEARNING	SUGGESTED
	Learners should be able to:	(ATTTUDES, SKIILS	ACTIVITIES AND NOTES	KESUURSES

		AND KNOWLEDGE)		
Transition Elements	 explain what is meant by transition, in terms of d-block element forming one or more stable ions with incomplete d-orbitals analyse the electronic configuration of the first row transition elements and their ions recognise that the atomic radii, ionic radii and first ionisation energies of the transition metals are relatively invariant contrast qualitatively the melting point, density, atomic radius, first ionisation energy and conductivity of the transition elements with those of calcium as a typical s-block element describe the tendency of transition elements to have variable oxidation states explain the formation of complexes in terms of coordinate bonds and the splitting of d orbitals 	 Characteristic properties Variable oxidation state 	 Discussing characteristic properties of transition elements Working out the electronic configuration of the first row transition elements and their ions Analyzing atomic radii, ionic radii and first ionisation energies data of the transition metals Comparing the melting points, densities, atomic radii, first ionisation energies and conductivities of the transition elements with those of calcium as a typical s-block element Experimenting to show variable oxidation states Discussing formation of complexes 	 Form 5 and 6 Science Kit ICT Tools and Braille/Jaws software

 describe the shape of four- fold and six fold complexes explain the types of isomerism that complexes may exhibit explain ligand exchanges in terms of competing equilibria and stability constants 	 Complex formation Drawing shapes of complexes and showing isomerism Experimenting on ligand exchange
 explain redox reactions of complexes in terms of E⁰ values interpret the effect of ligand exchange on E⁰ values 	 Calculating E^o cells to predict feasibility of reactions
• explain, in terms of d orbital splitting, why transition element complexes are usually coloured	Discussing the splitting of d-orbitals in colour formation of complexes
 explain changes in colour of complexes as a result of ligand exchange explain the magnetic 	

 properties of transition metals and their complexes in terms of paired and unpaired d electrons. describe the occurrence, relative stability and colour of vanadium ions and its compounds describe the uses of vanadium and its compounds describe the occurrence, relative stability and colour of chromium aqueous ions and compounds containing the metal in the +3 and +6 oxidation states. explain uses of chromium and its compounds 	 Colour concept Catalysis Magnetism 	 Experimenting on magnetic properties of transition metals and their complexes Deducing magnetic properties from electronic configurations investigating the occurrence relative stability and colour of vanadium ions and compounds discussing the uses of vanadium and compounds investigating the occurrence relative stability and colour of vanadium and compounds 	• Ammonium vanadate (V),
 describe the use of dichromate (VI) as an oxidising agent describe the chromate (VI) 	Chromiumoccurence	 discussing the uses of chromium and its compounds testing for alcohol and for sulphur dioxide using 	

	to dichromate (VI) interconversion describe the occurrence and relative stability and colour of manganese ions and compounds containing the metal in the +2, +4, +6 and +7 oxidation states	•	chemical properties its uses	and	•	dichromate (VI) demonstrating the interconversion of chromate (VI) to dichromate (VI) using dilute acids and alkalis Investigating the occurrence relative stability and colour of manganese compounds		
•	demonstrate redox reactions involving MnO ₂ , MnO ₄ ²⁻ and MnO ⁻ 4		P21			Experimenting on the		
•	describe the occurrence, relative stability and colour of ironcompounds,	•	manganese occurrence		•	disproportionation of MnO_4^{2-}		
•	describe the effect of pH and the cyanide ligand on stability of iron and its ions explain the biochemical importance of iron in haemoglobin and in cytochrome		chemical properties uses	and	•	Investigating the occurrence relative stability and colour of iron compounds Experimenting on the effect of pH on stability of iron and its ions Discussing the biochemical	•	Manganese dioxide Hydrogen peroxide Sodium hydroxide
•	analyse the rusting of iron and its prevention	•	iron occurrence	and		importance of iron in haemoglobin and in		

•	distinguish between Fe ²⁺ (aq) and Fe ³⁺ (aq) using Fe(CN) ₆ ³⁻ (aq) and SCN ⁻ (aq), respectively	extraction		 cytochrome Investigating conditions for iron to rust and its prevention Testing for Fe²⁺ (aq) and Fe³⁺ (aq) using Fe(CN)₆³⁻ 	
•	describe the use of iron and its compounds	 chemical properties 	and	 (aq) and SCN (aq), respectively Discussing the use of iron and its compounds 	
• [[C([C(Describe the occurrence, relative stability and colour of cobalt ions and compounds containing the metal in its +2 and +3 oxidation states, explain the effect of ligands and/or temperature on the stability and geometry of cobalt complexes, using as examples $o(H_2 O)_6]^{2+}[CoCl_4]^{2!}$, and $o(NH_3)_6]^{2+}$ [Co(NH_3)_6]^{3+} explain the uses of cobalt as in alloys, anhydrous cobalt (II) ions as a test for	uses • cobalt • Occurrence		 Investigating the occurrence relative stability and colour of cobalt compounds Experimenting on the effects of temperature on stability of cobalt complexes 	 Iron nails Magnesium ribbon Potassium hexacyanoferrate (III) Potassium Thiocyanate

water and its biochemical		
importance	 Chemical properties and uses 	 Discussing the uses of cobalt and its compounds
 describe the occurrence, production and purification of nickel from its sulphide ore 		BBC
 explain the use of nickel in alloys(e.g. alnico)and as a hydrogenation catalyst 		 Discussing the occurrence, production and purification of nickel from its sulphide ore
 describe the occurrence, production and purification of copper, 		 Discussing the use of nickel in alloys
 describe the occurrence and relative stability of ions and compounds containing the metal in the +1 and +2 	NickelOccurrence and	 Discussing the occurrence, production and purification of copper,
the disproportionation and stabilisation of Cu ⁺ (aq)	 Chemical properties and uses 	
 describe the reaction of Cu²⁺(aq) with I⁻(aq) explain uses of copper and 	 copper Occurrence and extraction 	 Investigating the occurrence, relative stability and colour of copper compounds
its compounds as in brass,		

	 bronze, other alloys, and in the test for aldehydes describe the occurrence and extraction of platinum identify elements which occur together with platinum 	Chemical properties and uses	 Experimenting on the reaction of Cu²⁺(aq) with I⁻ (aq) Discussing the uses of copper and its compounds 	
	 suggest the uses of platinum group metals 		 Investigating the occurrence and extraction of platinum Visiting sites 	
		 Platinum group metals (PGM) -occurrence -extraction -uses 		
Phase Equilibria	• explain steam distillation of two immiscible liquids	Steam Distillation	• experimenting on steam distillation	Form 5 and 6 Science Kit

 demonstrate an awareness of the applications of steam distillation 		discussing methods of distillation	 ICT Tools and Braille/Jaws software
explain the term partition coefficient	Distribution between	SIG	
 calculate partition coefficient for a system in which the solute is in the same molecular state in the two solutions 	pilases	 working out partition coefficient for a system 	
 explain solvent extraction explain: paper, high performance liquid, ion exchange, thin layer, column and gas/liquid 	Chromatography	 carrying out solvent extraction Performing thin layer, column and paper chromatography 	
 chromatography in terms of absorption and/or partition, based on appropriate practical experience demonstrate an awareness of the applications of these 		 Discussing industrial and medical applications of 	
 methods of chromatography in industry and medicine describe the process of electrophoresis, and the effect of pH 		chromatography	 Chromatography kit and chromatograms Resource persons
 describe the hydrolysis of proteins, separation and 	electrophoresis	Discussing electrophoresis and genetic fingerprinting	

	 detection of the products by electrophoresis outline the process of analysis of genes and genetic fingerprinting 	 genetic fingerprinting 		
Environmental Chemistry	7.0 outline the main industrial methods of controlling sulphur dioxide emission (flue gas desulphurisation, alkaline scrubbing, use of limestone-based fluidised beds)	Air Pollution and Control	Discussing the main causes of air pollution	 ICT Tools and Braille/Jaws software Resource persons
	8.0 recognise the use of lean- burn engines and catalytic converters in reducing pollutant emissions from petrol-driven cars		 Discussing the methods of controlling pollution 	
	9.0 deduce environmental considerations related to the usage and generation of power (with particular reference to fossil fuels and nuclear energy)		 Discussing environmental impact of power generation Visiting sites 	
	10.0 identify other potential power sources recognise the hazards		Case studying	

associated with random emission from uranium-bearing rocks and with nuclear accidents			
11.0 recognise the potential application and risks of nanomaterials	 applications of nanomaterials medicine water purification environmental pollution control and remediation 	 Discussing the concepts of nanoscience and nanotechnology Predicting the potential applications and risks of nanomaterial 	Resource
 12.0 outline the use of ion exchange in the treatment of industrial waste 13.0 recognise the potential consequence of the use of land-filling and incineration (including the importance of temperature control and the possible release of dioxins) for the disposal of solid waste 14.0 outline the advantages and disadvantages of 	 Waste management Ion exchange Incineration Land filling Recycling 	 Discussing the various methods of waste management 	persons

9.0 ASSESSMENT

(a) ASSESSMENT OBJECTIVES

The scheme of assessment is grounded in the principle of inclusivity and equalisation of opportunities hence does not condone direct or indirect discrimination of learners.

Modifications of arrangements to accommodate candidates with special needs must be put in place in both continuous and summative assessments. These modifications must neither give these candidates an undue advantage over others nor compromise the standards being assessed.

NB: For further details on arrangements, accommodations and modifications refer to the assessment procedure booklet.

The three assessment objectives in A - Level Chemistry are:

- 1: Knowledge with understanding
- 2: Handling information and problem solving
- 3: Experimental skills, investigations and applications

1: Knowledge with understanding

Candidates should be able to demonstrate knowledge and understanding of:

- scientific phenomena, facts, laws, definitions, concepts, theories
- scientific vocabulary, terminology, conventions (including symbols, quantities and units)
- scientific instruments and apparatus, including techniques of operation and aspects of safety
- scientific quantities and their determination
- scientific and technological applications with their social, economic and environmental implications.

2: Handling information, problem solving, synthesis, analysis and evaluation

In words or using other written forms of presentation (e.g. symbolic, graphical and numerical), candidates should be able to:

- locate, select, organise and present information from a variety of sources
- translate information from one form to another
- manipulate numerical and other data
- use information to identify patterns, report trends and draw inferences
- present reasoned explanations of phenomena, patterns and relationships
- make predictions and hypotheses
- solve problems, including some of a quantitative nature.
- 3: Experimental skills, investigations and applications

Candidates should be able to:

• know how to use techniques, apparatus, and materials (including following a sequence of instructions, where appropriate)

- make and record observations and measurements
- interpret and evaluate experimental observations and data

• plan investigations, evaluate methods and suggest possible improvements (including the selection of techniques, apparatus and materials).

• solve everyday life challenges, acquire and enhance enterprising skills using the knowledge of chemistry

(b) SCHEME OF ASSESSMENT

The scheme of assessment for Form 5 and 6Chemistry comprises

- i) Continuous assessment, and
- ii) Summative assessment.

The final grade in Form 5 and 6Chemistry is 30% continuous assessment and 70% summative assessment.

The assessment shall be administered as follows:

Continuous Assessment/Profile

This component will consist of standardised tests in Practical, Theory and Projects administered during the first 5 terms.

Level	Assessment tasks	Frequency	Weighting
Form 5	Practical test	2 per term	
	Theory test	• 3 per term	10%
	Project	• 1 per year	

Form 6	 Practical test 	3 per term	2
	Theory test	• 3 per term	20%
	 Project 	• 1 per year	

Summative assessment

- Paper 1: Multiple choice questions
- Paper 2: Structured theory questions
- Paper 3: Free response, short essay type questions
- Paper 4: Practical examination

Learners are required to enter for all the 4 papers

Paper	Type of paper	Duration	Marks	Paper Weighting %
1	Multiple choice	1hr	40	11
2	Structured Theory questions	1hr 30mins	60	17
3	Free Response short essay type questions	2hrs 30mins	90	28
4	Practical examination	2hrs 30mins	50	14

Paper 1: Theory: the paper consists of 40 compulsory multiple choice items. 30 items will be of the direct choice type and 10 of the multiple completion type. Each question shall have 4 response items.

Paper 2: Theory. The paper consist of 6 compulsory structured questions, 10 marks each. Learners answer all the questions on the Question Paper

Paper 3: Theory

This paper will consist of 4 sections, Section A, B, C and D

Section A, based mainly on the Physical Chemistry Section

Section B, based mainly on Inorganic Chemistry

Section C, based mainly on Organic Chemistry

Section D, based mainly on the Applications of Chemistry

Leaners will be required to answer a total of 6 questions, 2 questions from Section A, 1 question from Section B, 2 questions from Section C and 1 question from Section D.The paper will be marked out of 90 and scaled down to a mark of 50.

Paper 4: Practical Examination

The paper consist of 3 compulsory structured questions based on qualitative analysis, quantitative analysis and planning/design. The paper will be marked out of 50 marks.

(c) SPECIFICATION GRID

SKILL	Paper 1	Paper 2	Paper 3	Paper 4
Knowledge, Understanding and Handling of information	45% (18marks)	42% (25marks)	40% (40marks)	
Problem solving Analysis, Synthesis and Evaluation	55% (22marks)	58% (35 marks)	60%(60marks)	
practical skills		4		100%(50marks)

10.0 GLOSSARY/APPENDICES

10.1 GLOSSARY OF TERMS USED IN SYLLABUS/SCIENCE PAPERS

It is hoped that the glossary (which is relevant only to science subjects) will prove helpful to candidates as a guide, i.e. it is neither exhaustive nor definitive. The glossary has been deliberately kept brief not only with respect to the number of terms included but also to the descriptions of their meanings. Candidates should appreciate that the meaning of a term must depend in part on its context.

- 1 *Define (the term(s)...)* is intended literally. Only a formal statement or equivalent paraphrase being required.
- 2 What do you understand by/What is meant by (the term(s)...) normally implies that a definition should be given, together with some relevant comment on the significance or context of the term(s) concerned, especially where two or more terms are included in the question. The amount of supplementary comment intended should be interpreted in the light of the indicated mark value.
- 3 *State* implies a concise answer, with little or no supporting argument, e.g. a numerical answer that can be obtained 'by inspection'.

- *List* requires a number of points, generally each of one word, with no elaboration. Where a given number of points is specified, this should not be exceeded.
- *Explain* may imply reasoning or some reference to theory, depending on the context.
- 6 Describe requires candidates to state in words (using diagrams where appropriate) the main points of the topics. It is often used with reference either to particular phenomena or to a particular experiment. In the former instance the term usually implies that the answer should include reference to (visual) observations associated with the phenomena.

In other contexts, *describe* and *give* an *account* of should be interpreted more generally, i.e. the candidate has greater discretion about the nature and the organisation of the material to be included in the answer. Describe and explain may be coupled in a similar way to *state* and *explain*.

- *Discuss* requires candidates to give a critical account of the points involved in the topic.
- *Outline* implies brevity, i.e. restricting the answer to giving essentials.
- *Predict* or *deduce* implies that the candidate is not expected to produce the required answer by recall but by making a logical connection between other pieces of information. Such information may be wholly given in the question or may depend on answers extracted in an earlier part of the question.
- *Comment* is intended as an open-ended instruction, inviting candidates to recall or infer points of interest relevant to the context of the question, taking account of the number of marks available.
- *Suggest* is used in two main contexts, i.e. either to imply that there is no unique answer (e.g. in chemistry, two or more substances may satisfy the given conditions describing an 'unknown'), or to imply that candidates are expected to apply their general knowledge to a 'novel' situation, one that may be formally 'not in the syllabus'.
- *Find* is a general term that may variously be interpreted as calculate, measure, determine etc.

- *Calculate* is used when a numerical answer is required. In general, working should be shown, especially where two or more steps are involved.
- *Measure* implies that the quantity concerned can be directly obtained from a suitable measuring instrument, e.g. length, using a rule, or angle using a protractor.
- *Determine* often implies that the quantity concerned cannot be measured directly but is obtained by calculation, substituting measured or known values of other quantities into a formula, e.g. relative molecular mass.
- *Estimate* implies a reasoned order of magnitude statement or calculation of the quantity concerned, making such simplifying assumptions as may be necessary about points of principle and about the values of quantities not otherwise included in the question.
- *Sketch*, when applied to graph work, implies that the shape and/or position of the curve need only be qualitatively correct, but candidates should be aware that, depending on the context, some quantitative aspects may be looked for, e.g. passing through the origin, having an intercept, asymptote or discontinuity at a particular value.

In diagrams, *sketch* implies that a simple, freehand drawing is acceptable: nevertheless, care should be taken over proportions and the clear exposition of important details.

- *Construct* is often used in relation to chemical equations where a candidate is expected to write a balanced equation, not factual recall but by analogy or by using information in the question.
- *Compare* requires candidates to provide both the similarities and differences between things or concepts.
- *Classify* requires candidates to group things based on common characteristics.

PRACTICAL GUIDELINES (PAPER 4)

The practical paper may include the following:

(i) A volumetric analysis problem, based on one set of titrations;

A knowledge of the following volumetric determination will be assumed: acids and alkalis using suitable indicators; iron (II), ethanedioic acid (and its salts), by potassium manganate (VII); iodine and sodium thiosulphate. Simple titrations involving other reagents may also be set but, where appropriate, sufficient working details will be given.

- (ii) Candidates may be required to carry out an experiment that involves the determination of some quantity, e.g. the enthalpy change of a reaction or, the rate of a reaction. Such experiments will depend on the simple manipulation of usual laboratory apparatus.
- (iii) An observational problem in which the candidate will be asked to investigate, by specified experiments, an unknown substance. The substance may be an element, a compound or a mixture.

It will be assumed that candidates will be familiar with

- (i) the reactions of the following cations: NH_4^+ ; Mg^{2+} ; AJ^{3+} ; Ca^{2+} ; Cr^{3+} ; Mn^{2+} ; Fe^{2+} ; Fe^{3+} ; Cu^{2+} ; Zn^{2+} ; Ba^{2+} ; Pb^{2+} ;
- (ii) the reactions of the following anions: CO_3^{2-} ; NO_3^{-} ; SO_4^{2-} ; SO_3^{2-} ; CI; Br; I; CrO_4^{2-} ;
- (iii) tests for the following gases: NH₃; CO₂; Cl₂; H₂; O₂; SO₂, as detailed in the qualitative analysis notes which will be included in the question paper.

The substances to be investigated may contain ions not included in the above list: in such cases, candidates will **not** be expected to identify the ions but only to draw conclusions of a general nature.

Candidates should **not** attempt tests, other than those specified, on substances, except when it is appropriate to test for a gas.

Exercises requiring a knowledge of simple organic reactions, e.g. test-tube reactions indicating the presence of unsaturated hydrocarbons, alcoholic, phenolic and carboxylic groups, may also be set, but this would be for the testing of observation skills and drawing general conclusions only.

Candidates are NOT allowed to refer to note books, text books or any other information in the Practical examination.

Practical Techniques

The following notes are intended to give schools and candidates an indication of the accuracy that is expected in quantitative exercises and general instructions for qualitative exercises.

- (a) Candidates should normally record burette readings to the nearest 0.05cm³ and they should ensure that they have carried out a sufficient number of titrations, e.g. in an experiment with a good end-point, at least two titres within 0.10cm³.
- (b) Candidates should normally record: weighings to the nearest 0.01g, temperature readings to the nearest 0.1°C when using a thermometer with a precision of 0.2°C.
- (c) In qualitative analysis exercises, candidates should use approximately 1cm depth of a solution (1-2 cm³) for each test and add reagents gradually, ensuring good mixing, until no further change is seen. Candidates should indicate at what stage a change occurs, writing any deductions alongside the observation on which they are based. Answers should include details of colour changes, precipitates formed, the names and chemical tests for any gases evolved (equations are **not** required).

Marks for deductions or conclusions can only be gained if the appropriate observations are recorded.

10.2 APPARATUS FOR FORM 5 - 6 SCIENCE KIT

This list given below has been drawn up in order to give guidance to schools concerning the apparatus that are expected to be generally available for examination purposes. The list is not intended to be exhaustive: in particular, items (such as Bunsen burners, tripods and glass-tubing) that are commonly regarded as standard equipment in a chemical laboratory are not included. Unless otherwise, the allocation is "per candidate".

Two 50cm³burettes, Two 25 cm³pipettes, One 10 cm³pipette, Teat pipette One pipette filler Three 250 cm³Conical flasks Volumetric flasks, 100cm³ and 150 cm³ Measuring cylinders, 10cm³ 25 cm³, 50 cm³ and 100cm³ 500cm³Wash bottle Two medium size filter funnels Porcelain crucible, approximately 15 cm³, with a lid Evaporating basin, at least 30 cm³ Beakers, squat form lip: 100 cm³, 250 cm³ Thermometers: -10°C to +110°C at 1°C; at 0.2°C precision -5°C to +50°C at 0.2°C Plastic beaker, e.g. polystyrene, of approximate capacity 150 cm³ Test-tubes (some of which should be Pyrex or hard glass) approximately 125 mm x 16 mm Boiling tubes, approximately 150 mm x 25 mm Clocks (or wall-clock) to measure to an accuracy of about 1s. (Where clocks are specified, candidates may use their own wrist watches if they prefer).

Balance, single-pan, direct reading, 0.01g or better (1 per 8-12 candidates).

Details of the requirements for a particular examination are given in the Instructions for Supervisors which are sent to Centres several weeks prior to the examination. These Instructions also contain advice about colour-blind candidates.

Supervisors are reminded of their responsibilities for supplying the Examiners with the information specified in the Instructions. Failure to supply such information may cause candidates to be unavoidably penalised.

The attention of Centres is drawn to the Handbook for Centres which contain a section on Science Syllabi which includes information about arrangements for practical examinations.

QUALITATIVE ANALYSIS NOTES

[Key: ppt = precipitate; sol. = soluble; insol = insoluble; xs = excess.]

1 Reactions of aqueous cations

cation	reaction with	
	NaOH(aq)	NH₃(aq)
aluminium, Al ³⁺ (aq)	white ppt. sol. in xs	white ppt. insol. in xs
ammonium, NH₄⁺(aq)	ammonia produced on heating	0
barium Ba ²⁺ (aq)	no ppt. (if reagents are pure)	no ppt.
calcium, Ca ²⁺ (aq)	white. Ppt. with high [Ca ²⁺ (aq)]	no ppt.

chromium (III),	grey-green ppt. sol. in xs	grey-green ppt.
Cr ³⁺ (ag)	giving dark green solution	insol. in xs
copper(II), Cu ²⁺ (aq),	blue ppt.	pale blue ppt. sol. in
		solution
iron (II), Fe ²⁺	green ppt.	green ppt.
(aq)	insol. in xs	insol. in xs
iron (III),	red-brown ppt.	red-brown ppt.
Fe ³⁺ (aq)	insol. in xs	insol. in xs
lead (II), Pb ²⁺	white ppt.	white ppt.
(aq)	sol. in xs	insol. in xs
magnesium, Mg²+	White ppt.	white ppt.
(aq)	insol. in xs	insol. in xs
manganese (II),	off-white ppt.	off-white ppt.
Mn²+(aq)	insol. in xs	insol. in xs
zinc,	White ppt.	white ppt.
Zn²+(aq)	sol. in xs	sol. in xs

[Lead (II) ions can be distinguished from aluminium ions by the insolubility of lead (II) chloride].

2 Reactions of anions

lon	Reaction
carbonate, CO3 ²⁻	CO ₂ liberated by dilute acids
chromate (VI) CrO₄²-(aq)	yellow soln turns orange with H ⁺ (aq); gives yellow ppt. with Ba ²⁺ (aq); gives bright yellow ppt. with Pb ²⁺ (aq)
chloride, C/ (aq)	gives white ppt. with Ag⁺(aq) (sol. in NH₃(aq)) gives white ppt. with Pb²+(aq)
bromide, Br ⁻ (aq)	gives pale cream ppt. with Ag ⁺ (aq) (partially sol. in NH ₃ (aq)); gives yellow ppt. with Pb ²⁺ (aq)
iodide, I ⁻ (aq)	gives yellow ppt. with Ag ⁺ (aq) (insol. in NH ₃ (aq)); gives yellow ppt. with Pb ²⁺ (aq)
nitrate, NO₃ (aq)	NH_3 liberated on heating with $OH^-(aq)$ and AI foil
nitrite, NO2 ⁻ (aq)	NH ₃ liberated on heating with OH ⁻ (aq) and AI foil; NO liberated by dilute acids (colourless NO – (pale) brown NO ₂ in air)
sulphate, SO4 ²⁻ (aq)	gives white ppt. with $Ba^{2+}(aq)$ or with $Pb^{2+}(aq)$ (insol. in xs dilute strong acids)
sulphite,	SO ₂ liberated with dilute acids;
SO ₃ ² (aq)	gives white ppt. with Ba ²⁺ (aq) (sol. in dilute strong acids)

3 Test for gases

Gas Test and test result

ammonia,	turns damp red litmus paper blue;	
NH₃		
carbon dioxide,	gives a white ppt. with limewater	
CO ₂	(ppt. dissolves with xs CO ₂)	
chlorine,	bleaches damp litmus paper	
hydrogen.	"pops" with a lighted splint	
H ₂		
oxvaen.	relights a glowing splint	
O_2		•
sulphur dioxide	turns aqueous potassium dichromate (VI) from orange	
SO ₂	to green	
	61	

Ige

ANT HERE CHIMS IN SULLISS IN SULL