

ZIMBABWE

MINISTRY OF PRIMARY AND SECONDARY EDUCATION

AGRICULTURE ENGINEERING SYLLABUS

FORMS 5 - 6

2015-2022

Curriculum Development Unit P.O.BOX MP133 Mount Pleasant Harare

© All Rights Reserved 2015

ACKNOWLEDGEMENTS

The Ministry of Primary and Secondary Education wishes to acknowledge the following for their valued contribution in the production of this syllabus:

- The National Agriculture Engineering Syllabus Panel
- Zimbabwe School Examinations Council (ZIMSEC)
- Chibero College of Agriculture
- Kushinga Phikelela National Farmers' Training College
- Seke Teachers' College
- Belvedere Technical Teachers' College
- Ministry of Agriculture, Mechanization and Irrigation Development: Department of Irrigation Development
- University of Zimbabwe
- United Nations Children's Education Fund (UNICEF)

Contents

ACKNOWLEDGEMENTS	2
1.0 PREAMBLE	4
1.1 INTRODUCTION	4
1.3 SUMMARY OF CONTENT	5
1.4 ASSUMPTIONS	6
1.5 CROSS- CUTTING ISSUES	6
2.0 PRESENTATION OF SYLLABUS	7
3.0 AIMS	7
4.0 SYLLABUS OBJECTIVES	7
5.0 METHODOLOGY AND TIME ALLOCATION	8
5.1.1TIME ALLOCATION	9
6.0 TOPICS	9
7.0 SCOPE AND SEQUENCE	9
7.1 TOPIC 1: FARM MECHANISATION	9
7.2 TOPIC 2: ENGINES	10
7.4TOPIC 4: PLANTING AND FERTILIZING EQUIPMENT	11
7.5TOPIC 5: CROP PROTECTION EQUIPMENT	11
7.6TOPIC 6: HARVESTING AND PROCESSING EQUIPMENT	11
7.7 TOPIC 7: SURVEYING AND FARM STRUCTURES	12
8.0 COMPETENCY MATRIX	14
FORM 5 SYLLABUS	14
8.1 TOPIC 1: FARM MECHANISATION	14

	14
	15
8.2 TOPIC 2: ENGINES	
TOPIC 3: TILLAGE IMPLEMENTS	22
8.4 TOPIC 4: PLANTING AND FERTILIZING EQUIPMENT	23
8.5 TOPIC 5: CROP PROTECTION EQUIPMENT	24
FORM 6 SYLLABUS	25
Sub topic: Harvesting and processing equipment Sub topic:	25
	26
7.10 TOPIC 10: COST ANALYSIS IN AGRICULTURE ENGINEERING	36
8.0 ASSESSMENT MODEL	38
Agriculture engineering learning area will be assessed through continuous and summative assessment	.38
ASSESSMENT	39
9.0 SUGGESTED RESOURCES FOR AGRICULTURE ENGINEERING	44

1.0 PREAMBLE

1.1 INTRODUCTION

Zimbabwe embarked on an agrarian Land Reform programme in which mechanization in agriculture is a key component. Consequently, it is imperative that learners, in their diversity, acquire essential agricultural engineering knowledge and skills to enhance food security. This syllabus is designed for Form 5 and 6 learners in Agriculture Engineering. Learners must cherish land as their national heritage which can sustainably be used to enhance food security through mechanization. It is hoped that the concepts, principles and practices learnt in Agriculture Engineering will equip learners with relevant skills to use appropriate technology to boost agricultural production. Learners will be assessed through continuous and summative assessments.

1.2 RATIONALE

Agriculture is a learning area studied from Grade 3 to Form 4, therefore it is important for learners to specialize in Agriculture Engineering at Forms 5 and 6 so as to acquire relevant skills and knowledge to enhance food production, create employment and for further learning opportunities. Specialisation would enable learners to be proactive, productive and add value to the community and national economy. This learning area will enhance learners' ability to operate, maintain, design, produce and manage agricultural machinery. Learners will, at the end of the two-year learning phase, value the dignity of labour, role of mechanization and food sovereignty.

The Agriculture Engineering syllabus will enable learners to develop the following skills:

- Psycho motor
- Problem-solving
- Critical thinking
- Decision-making
- Conflict resolution
- Leadership and team-work
- Self-management
- Communication
- Technological innovation
- Enterprise development
- Research
- Equipment handling

1.3 SUMMARY OF CONTENT

The learning area will include the study on the creation of a favourable environment for crop and animal production, sources of farm power, farm structures and sustainable use of resources. It will also help learners to acquire competency skills in design, construction, operation and maintenance of farm machinery and structures.

1.4 ASSUMPTIONS

It is assumed that learners have practical skills and knowledge in:

- Agricultural farm machinery and tools.
- General maintenance of farm machinery and tools
- Properties of material
- Soil and water conservation
- Sustainable use of agricultural resources
- E learning
- Basic scientific calculations

1.5 CROSS- CUTTING ISSUES

The Agriculture Engineering learning area will encompass the following cross cutting themes:

- Environmental issues
- enterprise skills
- Sustainable resource utilisation
- Disaster and risk reduction
- Inclusivity
- Teamwork
- Digital literacy

2.0 PRESENTATION OF SYLLABUS

The Agriculture Engineering syllabus is a single document covering Forms 5- 6. The syllabus has a suggested list of resources to be used during teaching and learning.

3.0 AIMS

The syllabus aims to help learners to:-

- 3.1 develop an appreciation of the socio-economic importance of Agriculture Engineering to the agriculture industry in the country.
- 3.2 develop positive attitudes towards Agriculture Engineering as a learning area
- 3.3 develop knowledge and understanding of advanced scientific principles in Agriculture Engineering
- 3.4 apply psycho-motor and cognitive skills in solving agriculture engineering problems
- 3.5 develop innovativeness in Agriculture Engineering through sustainable utilisation of local resources
- 3.6 prepare learners for life and work in an indigenised and competitive environment

4.0 SYLLABUS OBJECTIVES

By the end of the learning period learners should be able to:

- 4.1 demonstrate the socio economic importance of Agriculture Engineering to the agriculture industry in the country.
- 4.2 demonstrate understanding of Agriculture Engineering terminology, concepts and principles
- 4.3 Apply indigenous knowledge systems (IKS), scientific and mathematical principles in Agriculture Engineering.
- 4.4 apply problem-solving skills in challenges encountered in agriculture engineering.

4.5 Carry-out experiments in Agriculture Engineering

4.6 design models and machinery in agriculture engineering

4.7 apply safety precautions in the use of farm machinery and equipment.

4.8 demonstrate operational skills in the use of farm structures, machinery and equipment

5.0 METHODOLOGY AND TIME ALLOCATION

Learner-centered and hands-on approaches should be used in the development of concepts and skills. These approaches should be inclusive and encourage curiosity as well as promote practical-orientated learning. Emphasis should be placed on equipping learners with psycho - motor and research skills. Linkage between theory and practice should be implemented in the teaching and learning of Agriculture Engineering.

The following are suggested methods of teaching and learning of Agriculture Engineering:

- Research
- Educational tours
- E-learning
- Problem-solving
- Design
- Exhibitions
- Demonstrations
- Discussions

NB. The above suggested methods should be enhanced by the application of orthodidactic principles and multi-sensory approaches to teaching. These include tactility, concreteness, individualization, self-activity, totality and wholeness. Teachers are encouraged to address the learners' residual senses.

5.1.1 TIME ALLOCATION

12 periods of 40 minutes per week should be allocated to adequately cover the syllabus which should be 8 periods for practicals and 4 periods for theory. Learners should be engaged in at least 1 Educational Tour and 1 Exhibition per term.

6.0 TOPICS

- 1. Farm mechanization
- 2. Engines
- 3. Tillage implements
- 4. Planting and fertilizing equipment
- 5. Crop protection equipment
- 6. Harvesting and processing equipment
- 7. Farm structures
- 8. Irrigation structures and scheduling
- 9. Soil and water conservation structures
- 10. Cost analysis in Agriculture Engineering

7.0 SCOPE AND SEQUENCE

7.1 TOPIC 1: FARM MECHANISATION

TOPIC	FORM 5	FORM 6
Importance of Farm	Role of farm mechanization	
Mechanization	Workshop practices	
	Selection of farm machinery	

TOPIC	FORM 5	FORM 6
Engineering	Force	
Mechanics	Work	
	• Energy	
	Power	
	Machines	
	Computer applications in	
	agricultural engineering	
Sources of Farm Power	Renewable sources	
	Non-renewable sources	

7.2 TOPIC 2: ENGINES

TOPIC	FORM 5	FORM 6
Internal combustion engines	Operational principles	
	Power transmission	
Engine systems	Fuel system	
	Cooling system	
	Lubrication system	
	Electrical system	

7.3TOPIC 3: TILLAGE IMPLEMENTS

TOPIC	FORM 5	FORM 6
Tillage implements	Tillage implements	

7.4 TOPIC 4: PLANTING AND FERTILIZING EQUIPMENT

TOPIC	FORM 5	FORM 6
Planting and Fertilizing	Planting and fertilizing equipment	
equipment		

7.5 TOPIC 5: CROP PROTECTION EQUIPMENT

TOPIC	FORM 5	FORM 6
Spraying and dusting equipment	Sprayers and dustersOperational principles	

7.6 TOPIC 6: HARVESTING AND PROCESSING EQUIPMENT

TOPIC	FORM 5	FORM 6
Harvesting and Processing equipment		Operational principles

ΤΟΡΙΟ	FORM 5	FORM 6

7.7 TOPIC 7: SURVEYING AND FARM STRUCTURES

TOPIC	FORM 5	FORM 6
Surveying and Farm Structures		 Surveying for agricultural projects Environmental Impact Assessment Theory of structures and stress analysis Animal structures Engineering of controlled environments Storage structures

7.8 TOPIC 8: IRRIGATION, STRUCTURES AND SCHEDULING

TOPIC	FORM 5	FORM 6
		Soil-plant-water relationships
Soil water		Soil-water movement and retention

TOPIC	FORM 5	FORM 6
		Soil-water determination
Irrigation		 Irrigation methods Irrigation designs Hydraulic irrigation structures Irrigation scheduling Irrigation efficiency

7.9. TOPIC 9: SOIL AND WATER CONSERVATION STRUCTURES

TOPIC	FORM 5	FORM 6
Soil erosion		Soil-loss models
		Control measures
Water conservation		 water conservation techniques
techniques		 Integrated water management
		(IWM)
		water legislation

7.10. TOPIC 10: COST ANALYSIS IN AGRICULTURE ENGINEERING

TOPIC	FORM 5	FORM 6
Farm machinery operation cost calculations		Valuation of machineryannual operating costsincome tax and finance

TOPIC	FORM 5	FORM 6

8.0 COMPETENCY MATRIX

FORM 5 SYLLABUS

8.1 TOPIC 1: FARM MECHANISATION

KEY	LEARNING OBJECTIVES	CONTENT	SUGGESTED ACTIVITIES	SUGGESTED
CONCEPT	Learners should be able to:		AND NOTES	RESOURCES
	• explain the concept farm	Farm mechanization	• Explaining the concept of	Farm machinery
mechanization		Role of farm	farm mechanization	Recommended
	 discuss the implementation and impact of farm mechanization in Zimbabwe 	mechanisation	 discussing the implementation and impact of farm mechanization in Zimbabwe 	text books/talking ICT Tools with JAWS software
Workshop	 apply safety practices in the 	Workshop safety	• applying safety practices in	Farm machinery
practices	workshop	Workshop operations:	the workshop eg first aid	

	 join materials using different welding methods apply welding skills to design appropriate technology 	-Welding -Soldering -Brazing	 Joining materials using different welding methods: which are arc welding, soldering and brazing Designing farm machinery using welding 	 Recommended textbooks/ ICT tools with JAWS software Workshop foreman
Selection of farm machinery	 classify Farm machinery according to use and power output match tractor power output and implement power requirements describe factors affecting selection of farm machinery 	 Farm machinery: Types Classification Factors affecting selection of farm machinery 	 identifying categories and types of farm machinery classifying tractors according to use and power output matching tractor power output and implement power requirements describing factors affecting selection of farm machinery undertaking an educational tour to a local farm 	 Tractor and implements ICT Tools with JAWS software Farm mechanic

KEY	LEARNING OBJECTIVES	CONTENT	SUGGESTED ACTIVITIES	SUGGESTED
CONCEPT	Learners should be able to:		AND NOTES	RESOURCES
Force	• demonstrate equilibrium of forces	Forces	Demonstrating equilibrium	Objects and
		- equilibrium of forces	of forces	materials to
	 Solve problems related to forces 	- moments of forces	Solving problems related to	demonstrate

describe types of energy		machinery	
calculate work done	Types of energyWork done	 Describing types of energy such as potential, kinetic, electrical, heat Calculating work done (Work = Force X Distance) 	 Tractor and implements Print and electronic media ICT Tools with JAWS software
solve problems related to work, energy and power	Power output	 Solving problems related to work, energy and power 	
describe operational principles of drives	 Types of Drives: Chains Belts Pulleys Gears Block and Tackles Operational Mechanisms Machinery efficiency 	 Identifying drives used in farms Describing operational principles of drives : levers, wheel and axle, velocity ratio, mechanical advantage, efficiency Calculating machinery efficiency=Work output/work input, 	 Machines Print and electronic media ICT Tools with JAWS software
• • • • • • • • • • • • • • • • • • •	solve problems related to work, energy and power identify drives used in farms describe operational principles of drives	solve problems related to work, energy and power identify drives used in farms -Chains -Belts -Pulleys -Gears -Block and Tackles Operational Mechanisms Machinery efficiency	calculate work done• Work doneelectrical, heatsolve problems related to work, energy and power• Power output• Calculating work done (Work = Force X Distance)solve problems related to work, energy and power• Power output• Solving problems related to work, energy and poweridentify drives used in farms• Types of Drives: -Chains -Belts -Pulleys -Gears -Block and Tackles Operational Mechanisms• Identifying drives used in farmsdescribe operational principles of drives• Machinery efficiency• Describing operational principles of drives : levers, wheel and axle, velocity ratio, mechanical advantage, efficiency=Work output/work input,

	 mechanical advantage and velocity ratio design agricultural machinery operate agricultural machinery carry-out routine maintenance procedures on farm machinery 	 designs and models machinery operation routine maintenance of farm machinery 	 mechanical advantage = Load/Effort, Velocity Ratio= Distance moved by Effort/ Distance moved by load Designing agricultural machinery Operating farm machinery Carrying-out routine maintenance procedures on farm machinery 	
applications in agricultural	 describe the significance of computer programmes in agricultural engineering carry out computer programming for selected agricultural equipment 	Computer programming	• describing the application of computer programmes in agricultural engineeringcarrying out computer programming for selected agricultural equipment	Print and electronic mediaICT Tools with JAWS software

KEY CONCEPT	LEARNING OBJECTIVES Learners should be able to:	CONTENT	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Renewable Sources of farm power	 discuss applications of renewable energy in agriculture 	 solar energy hydro-energy Wind 	 discussing applications of renewable energy in agriculture. designing systems to harness renewable energy 	 Locally available renewable sources of farm power Print and electronic media ICT Tools with JAWS software
Non- Renewable Sources of farm power	 describe mechanical sources of farm power describe production limitations of thermal electric power 	 Mechanical power Thermal Electricity 	 describing mechanical sources of farm power describing production limitations of thermal electric power designing mechanical sources of farm power such as generators and motors 	 Mechanical sources of farm power such as generators, tractors Print and electronic media ICT Tools with JAWS software

8.2 TOPIC 2: ENGINES

KEY CONCEPT	LEARNING OBJECTIVES Learners should be able to:	CONTENT	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Operational principles	• describe operational principles of a 2 and 4 stroke cycles	 Operational principles of: -2 stroke cycle engine -4 stroke cycle engine 	 describing the operational principles of 2 and 4 stroke cycles 	 Engine blocks and models Print and electronic media ICT tools
Power transmission	 describe power transmission from the engine to the final drive. describe the functions of components of the power transmission system 	 Sequence of gears and shafts. Components and functions of the power transmission system. 	 describing power transmission from the engine to the final drive. describing the functions of components of the power transmission system: clutch, transmission gears, differential, rear axle and rear wheels. 	 Print and electronic media ICT tools. Tractor

КЕҮ	LEARNING OBJECTIVES	CONTENT	SUGGESTED ACTIVITIES	SUGGESTED
CONCEPT	Learners should be able to:		AND NOTES	RESOURCES
Fuel system	• describe fuel properties	• Properties of fuels.	• describing fuel properties: volatility, calorific value and ignition quality of fuel.	 Print and electronic media ICT tools. Tractor Fuel samples
	 describe the functions of components of petrol and diesel fuel systems 	 Components and functions of petrol and diesel fuel systems. 	• describing functions of components of petrol and diesel fuel systems: tank, fuel filters, fuel pump, injection pump	
Cooling system	 explain the reasons for cooling the engine. describe the principles of air and water cooling systems. 	 Purpose of cooling Principles of air and water cooling systems. 	 explaining reasons for cooling: maintaining optimum temperature, maintain lubricating properties of the oil. describing the principles of air and water cooling systems. 	 Print and electronic media Tractor/ models Motor cycle radiators fans

Lubrication system	 explain the importance of lubrication describe properties of lubricants describe lubrication systems 	 Lubrication: -importance - classification of lubricants -properties of lubricants Splash and forced feed 	 discussing the importance of lubrication classifying lubricants demonstrating lubrication of machinery describing properties of lubricants testing viscosity of lubricants describing lubrication systems 	 Print and electronic media Lubricants. Tractor
Electrical system	 identify parts of the electrical system of petrol and diesel engines explain the functions of parts of the electrical system of engines 	 electrical system of petrol and diesel engines: parts functions 	 identifying parts of the electrical system of petrol and diesel engines: battery, ignition coil, condenser, ignition switch. explaining the functions of parts of the electrical system of engines 	 tractor/ models Print and electronic media . ICT tools.

TOPIC 3: TILLAGE IMPLEMENTS

KEY	LEARNING OBJECTIVES Learners should be able to:	CONTENT	SUGGESTED ACTIVITIES	SUGGESTED RESOURCES
CONCEPT Tillage implements	 Learners should be able to: classify tillage implements describe tillage implements carry-out routine maintenance practices on tillage implements 	 Types: Primary Secondary Routine Maintenance 	 AND NOTES classifying tillage implements Identifying primary and secondary tillage implements describing parts of primary and secondary tillage implements carrying-out routine maintenance practices on tillage implements 	 RESOURCES Print and electronic media ICT –with JAWS software

8.4 TOPIC 4: PLANTING AND FERTILIZING EQUIPMENT

KEY CONCEPT	LEARNING OBJECTIVES Learners should be able to:	CONTENT	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Planting and fertilizing equipment	 identify types of planters and fertilizing equipment describe operational principles of planters and fertilizer applicators calibrate planters and fertilizer applicators carry out routine maintenance practices on planters and fertilizer applicators 	 Types Operational principles Calibration Maintenance 	 identifying types of planters and fertilizing equipment describing operational principles of planters and fertilizer applicators calibrating planter and fertilizer applicators carrying out routine maintenance practices on planters and fertilizer applicators 	 Planters and fertilizer applicators Farm technician Print and electronic media ICT with JAWSsoftware Scientific calculator

8.5 TOPIC 5: CROP PROTECTION EQUIPMENT

KEY	LEARNING OBJECTIVES	CONTENT	SUGGESTED ACTIVITIES	SUGGESTED
CONCEPT	Learners should be able to:		AND NOTES	RESOURCES
sprayers and dusters	 Identify types of sprayers and dusters discuss the properties of materials used in sprayers describe how parts are related to their functions demonstrate the calibration and operation of sprayers carry out routine maintenance practices of sprayers explain the safety precautions to consider when using crop protection equipment 	 Types of sprayers Knapsack Boom Mist blower Ultra low volume sprayers(UlV) Aerial Dusting machines Parts and functions Calibration and operation Maintenance of sprayers Safety precautions 	 Identifying types of sprayers and dusters Discussing the properties of materials used in sprayers Describing how parts are related to their functions Demonstrating the calibration and operation of a knapsack sprayer Carrying out routine maintenance practices of sprayers Explaining the safety precautions to consider when using crop protection equipment 	 Dfferent types of sprayers Recommended text books ICT Tools Recommended text books ICT Tools ICT Tools

FORM 6 SYLLABUS 7.6 TOPIC 6: HARVESTING AND PROCESSING EQUIPMENT

Sub topic: Harvesting and processing equipment

KEY	LEARNING OBJECTIVES	CONTENT	SUGGESTED ACTIVITIES	SUGGESTED
CONCEPT	Learners should be able to:		AND NOTES	RESOURCES
Operational Principles	 describe the operating mechanisms of combine harvesters describe the operating mechanism of diggers explain the operating mechanism of shellers and driers 	 Combine harvester operation. Operating mechanism of diggers Operating mechanism of shellers and driers 	 Describing the operating mechanisms of a combine harvester: cutting, picking, threshing, winnowing Undertaking an educational tour to a local farm Describing the operating mechanisms of diggers . Explaining the operating mechanisms of shellers and driers Operating a groundnut sheller 	 Combine harvester Recommende d text books ICT tools with JAWS Software Diggers Driers. Recommende d textbooks

8.7 TOPIC 7: SURVEYING AND FARM STRUCTURES:

Sub topic:

KEY CONCEPT	LEARNING OBJECTIVES Learners should be able to:	CONTENT	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Surveying for agricultural projects.	 discuss the significance of surveying in Agricultural projects carry out a survey to determine the suitability of land for agricultural projects 	 Agricultural survey: Types importance 	 Discussing the significance of surveying in agricultural projects Carrying out a survey using surveying instruments and equipment: GPS, computers, pacing, stadia, tape measure 	 Survey instruments and equipment Surveyor ICT tools
Environmental Impact Assessment (EIA)	 describe Environmenta l Impact Assessment(E IA) and its applications 	 Environmental Impact Assessment (EIA): -biodiversity -hydrology -soil properties 	 Describing Environmental Impact Assessment (EIA) and its application in agricultural projects 	 Resource person- EMA software Recommended text books ICT tools

	in agricultural projects • Carry out EIA on agricultural projects	-water quality	• Carrying out EIA on agricultural projects	
Theory of	• describe internal	Stress-strain forces	Describing internal	•
structures and	forces		forces	Text books
stress analysis		Materials for		Talking calculators
	• select	construction	Selecting appropriate	Scientific calculators
	appropriate		material for	 Large print text
	material for the construction of		construction of farm structures	books
	farm structures		structures	Educational tours
		• Improving properties		
		of materials	• Describing methods of	
	• describe		improving properties	
	methods of		of materials used in	
	improving		farm structures:	
	properties of		- trusses	
	materials used in farm		- joining - reinforcement	
	structures		- alloying	
	Structures		- painting	
		Mechanical properties	- reverting	
	• test the	of materials	0	
	mechanical		• Testing the mechanical	
	properties of		properties of materials	

	materials used in the construction of farm structures		used in the construction of farm structures: -material behaviour under axial static tension, static compression, static bending, static shear, static torsion, strain gauges, impact loads, fatigues of metals.	
Animal structures	 relate the design of the structure to its functions design an animal structures 	• Structural designs	 Relating the design of the structure to its function designing animal structures 	 Text books ICT JAWS – software Talking calculating Scientific calculators Large print text books Educational tours

Engineering of Controlled environments	 identify controlled environments for crop production site a greenhouse design a greenhouse describe the operational principles of a greenhouse carry out correctional management practices in a green house 	 Types of controlled environments: glass houses leth house green house Greenhouse: design operational principles management 	 Identifying types of controlled environments Sitting greenhouse Designing a greenhouse Describing operational principles of a greenhouse Carrying out correctional management practices in a greenhouse 	 Models of structures Resource person Educational tours Textbooks Large print text books Greenhouse
Storage structures	 identify factors affecting the site of different storage structures identify different 	 Water storage facilities Crops/grain storage facilities Animal storage facilities 	 Identifying factors affecting the site of different storage facilities Identifying different types of farm storage 	 Educational tours Text books Large print text books Models Experienced personnel

types of farm storage structures	structuresDescribing qualities of
• describe	ideal storage structures
qualities of ideal storage	Designing farm storage structures
structures	Constructing selected
design farm storage structures	farm storage structures
	Carrying out inspections and repairs on structures
Carry out routine	
maintenance practices	

7.8 TOPIC 8: IRRIGATION, STRUCTURES AND SCHEDULING

KEY CONCEPT	LEARNING OBJECTIVES Learners should be able to:	CONTENT	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Soil plant water relations	• outline types of soil moisture	 Types of soil moisture Moisture level: -wilting point -field capacity -saturation -available moisture gravitational moisture 	 describing soil- water movement percolation, seepage, and infiltration, capillary. 	 Recommended text books ICT tools Soil samples water
Soil-water movement and retention	• describe soil- water movement	- • Drainage	 carrying out experiment on soil-water movement 	 Recommended text books. ICT tools. calculator
Soil-water determination	 determine available soil moisture content. apply soil water relationsin irrigation 	 Soil moisture determination: gravimetric method volumetric method, moisture meter neutron probes, tensiometer 	 determining available moisture content in the soil applying soil water relations in irrigation 	

KEY CONCEPT	LEARNING OBJECTIVES Learners should be able to:	CONTENT	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Irrigation Methods Irrigation designs	 describe irrigation methods design any one irrigation system 	 Irrigation methods: Overhead Surface drip Irrigation designs 	 Describing irrigation methods Designing any one irrigation system Overhead Surface drip 	 Drip Sprinkler Flood, Basin Recommended text books. ICT tools.
Hydraulic Irrigation structures Irrigation Scheduling	 discuss types of pumps used in irrigation select a suitable pump for irrigation systems describe the operational mechanism of water conveyance and control structures. 	 Irrigation pumps types size Water conveyance and control structures. 	 Discussing types of pumps used in irrigation Selecting a suitable pump for an irrigation system Describing the operational mechanism of water conveyance and control structures: weirs, parshall flumes, drop chutes, canals. 	 Recommended text books ICT tools. Evaporating pan Plant samples Canals Recommended text books ICT tools
	Calculate crop water	• crop water requirements	Calculating crop water	Recommended

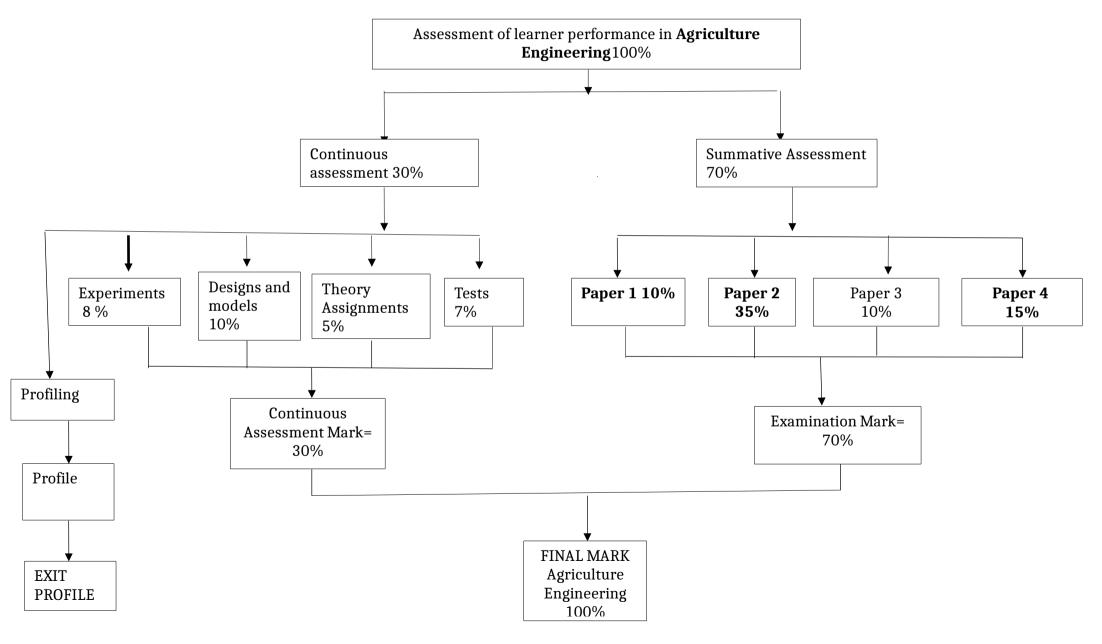
Irrigation efficiency	requirements	$ET_{crop} = ET_0.K_c$	requirements and irrigation cycles	text books. • ICT tools. Irrigation engineer
	 calculate efficiency for all types of irrigation systems. carry out routine maintenance on irrigation systems 	 Irrigation efficiency Routine maintenance on irrigation systems 	 Calculating efficiency for all types of irrigation systems. Carrying out routine maintenance on irrigation systems 	

7.9 TOPIC 9: SOIL AND WATER CONSERVATION STRUCTURES.

KEY CONCEPT	LEARNING OBJECTIVES Learners should be able to:	CONTENT	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Soil-loss models	• determine soil-loss	 Soil-loss models Soil Loss Estimation Model For Southern Africa (SLEMSA) -Universal Soil Estimation (USLE) 	Determining soil-loss using prediction models	 Educational tour Recommended text books ICT tools
Control measures	 describe biological, mechanical and cultural control measures of erosion 	 Control measures Biological Mechanical cultural 	 Describing biological, mechanical and cultural control measures of erosion 	 Recommended text books ICT tools Survey kit

- construct soil conservation	- Surveying and	
structures	constructing soil	
	conservation structures	

KEY	LEARNING OBJECTIVES	CONTENT	SUGGESTED ACTIVITIES	SUGGESTED
CONCEPT	Learners should be able to:		AND NOTES	RESOURCES
Water	 describe water 	 conservation 	- Describing water	- Educational
conservation	conservation techniques	techniques:	conservation techniques	tours
techniques		- dams		- Text books
		 roof harvesting 		- Survey kit
		- water wells		- ICT tools
		- conservation		
		tillage practices		
	 Construct water 	- contours	Constructing water	
	conservation structures		conservation structures	
				- Water Act
Integrated	 discuss the role of 	 Integrated water 	• Discussing the role of	- Resource
water	integrated water	management	integrated water	person(ZINWA)
management	management in water		management in water	
(IWM)	conservation		conservation	
TAT .				
Water	• interpret water legislation	• Water legislation:	• Interpreting water	TAT . A .
legislation	in Zimbabwe	- Water Act	legislation	- Water Act


7.10 TOPIC 10: COST ANALYSIS IN AGRICULTURE ENGINEERING.

KEY CONCEPT	LEARNING OBJECTIVES Learners should be able to:	CONTENT	SUGGESTED ACTIVITIES AND NOTES	SUGGESTED RESOURCES
Valuation of machinery	• determine the value of machinery over time	 Valuation of machinery: depreciation analysis time period remaining value period purchase and selling price 	 Calculating: depreciation analysis time period remaining value period purchase and selling price 	 Recommended textbooks ICT tools Machinery records
Annual operating costs	 identify fixed and variable costs apply fixed and variable costs in determining profitability and sustainability of machinery use 	 Operating costs: fixed costs variable costs 	 Identifying operating costs Applying fixed and variable costs in determining profitability and sustainability of machinery use 	 Recommended textbooks ICT tools Financial records

Income Tax and finance	 apply net-cash flows concept 	 Machinery financial budgets: -cost of capital -net present value -marginal tax rates 	 Applying net-cash flows concept in computing net- present value Budgets - ICT Tools with JAWS Software
	• apply results of analysis in decision making process		• Applying results of machinery cost analysis in the decision making process
	• formulate budgets		 Computing budgets: -cash-flow -break-even analysis -gross-margin -partial budgets

8.0 ASSESSMENT MODEL

ASSESSMENT

ASSESSMENT COMPONENT	WEIGHTING
Continuous assessment	30%
Summative assessment	70%

CONTINUOUS ASSESSMENT

Assessment will be done through			
Theory Assignments	5%		
Tests	7%		
Designs and Models	10%		
Experimental Tests	8%		

ASSESSMENT MODE	FORM 5 WEIGHTING	FORM 6 WEIGHTING
Theory assignment	2,5%	2,5%
Tests	3,5%	3,5%
Designs and Models	5%	5%
Experimental tests	4%	4%

ASSESSMENT MODE	FREQUENCY PER LEVEL	
	FORM 5	FORM 6
Theory assignments	2 per year	2 per year
Tests	2 per year	2 per year
Designs and Models	2 for the 2 levels	
Experimental tests	2 per year 2 per year	

SUMMATIVE ASSESSMENT 70%

Learners are required to take papers 1 to 4.

PAPER	DURATION	MARKS	WEIGHTING
DESCRIPTION			
Paper 1	1 hour	40	10%
Paper 2	2 hours 30mins	100	35%
Paper 3	2 hours	40	10%
Paper 4	4 terms	100	15%

PAPER 1

Consists of multiple choice questions from the whole syllabus. Candidates will be required to answer all 40 questions. Total marks 40

PAPER 2

This is a structured free response paper which has 2 sections namely A and B. Both sections are set from any part of the syllabus.

SECTION A

Candidates are required to answer all questions in this section. Six questions will be set, each question carries 10 marks Section total 60 marks

SECTION B

Essay type questions will be set from any part of the syllabus. Four questions will be set and candidates will be required to answer any 2 questions. Each question carries 20 marks.

Section total(40)Paper total(100)

PAPER 3

A practical examination will be set from any part of the syllabus. The paper will be based on experiments, investigations, observations and calculations. Full instructions will be given where unfamiliar material or techniques will be required. Two compulsory questions will be set. Each question carries 20 marks. Total 40 marks

PAPER 4

Candidates are required to carry out an experimental or a survey project. Candidates will design and carry out the project work on any part of the syllabus. The research project must emphasise both theoretical and practical aspects of Agriculture Engineering

A project report of 2 500 to 3000 words should be prepared and submitted by candidates. Total Marks 100

Skills Specification Grid

ASSESSMENT SKILL	PAPER 1	PAPER 2	PAPER 3	PAPER 4
Knowledge with	50	40	15	10
understanding				
Application of	30	40	35	40
knowledge				
Experimental skills	20	20	50	50
Total	100	100	100	100

ASSESSMENT OBJECTIVES

Learners will be assessed on their ability to demonstrate knowledge and understanding, application of knowledge and experimental skills

Knowledge and understanding

- discuss, describe, identify and demonstrate specific agricultural engineering facts, principles, relationships, concepts, practical techniques and terminology.
- summarise and explain any given agricultural engineering information.

Application of knowledge

- illustrate interpret, solve and criticize specific phenomena of agricultural engineering.
- schedule, test and experiment, using agricultural engineering facts and principles.
- compare, contrast and criticise any procedures, processes and techniques employed in agricultural engineering.

Experimental skills

- design and develop experimental activities in agricultural engineering.
- report, illustrate and interpret observations correctly.
- assess and justify methods of production employed in agricultural engineering.
- compose, construct and organise given agricultural engineering facts into diagrams, tables and graphs.
- analyse, interpret and evaluate results from any given agricultural engineering activity.

9.0 SUGGESTED RESOURCES FOR AGRICULTURE ENGINEERING

- petrol and diesel engines (tractor and generator)
- workshop and workshop equipment -arc welding machine complete with accessories
 - -Gas welding
 - -Grinders
 - -spanners
 - -drills
 - -compressor
 - -cutting equipment
 - -protective equipment
 - -consumables
- survey kit
- farm machinery
- neutron probes,
- tensiometer
- recommended textbooks/talking
- Computers with JAWS Software